LLM Uncertainty Quantification through Directional Entailment Graph and Claim Level Response Augmentation
- URL: http://arxiv.org/abs/2407.00994v2
- Date: Mon, 8 Jul 2024 04:52:23 GMT
- Title: LLM Uncertainty Quantification through Directional Entailment Graph and Claim Level Response Augmentation
- Authors: Longchao Da, Tiejin Chen, Lu Cheng, Hua Wei,
- Abstract summary: Large language models (LLMs) have showcased superior capabilities in sophisticated tasks across various domains, stemming from basic question-answer (QA)
This paper presents a novel way to evaluate the uncertainty that captures the directional instability, by constructing a directional graph from entailment probabilities.
We also provide a way to incorporate the existing work's semantics uncertainty with our proposed layer.
- Score: 5.255129053741665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Large language models (LLMs) have showcased superior capabilities in sophisticated tasks across various domains, stemming from basic question-answer (QA), they are nowadays used as decision assistants or explainers for unfamiliar content. However, they are not always correct due to the data sparsity in specific domain corpus, or the model's hallucination problems. Given this, how much should we trust the responses from LLMs? This paper presents a novel way to evaluate the uncertainty that captures the directional instability, by constructing a directional graph from entailment probabilities, and we innovatively conduct Random Walk Laplacian given the asymmetric property of a constructed directed graph, then the uncertainty is aggregated by the derived eigenvalues from the Laplacian process. We also provide a way to incorporate the existing work's semantics uncertainty with our proposed layer. Besides, this paper identifies the vagueness issues in the raw response set and proposes an augmentation approach to mitigate such a problem, we conducted extensive empirical experiments and demonstrated the superiority of our proposed solutions.
Related papers
- On Subjective Uncertainty Quantification and Calibration in Natural Language Generation [2.622066970118316]
Large language models often involve the generation of free-form responses, in which case uncertainty quantification becomes challenging.
This work addresses these challenges from a perspective of Bayesian decision theory.
We discuss how this assumption enables principled quantification of the model's subjective uncertainty and its calibration.
The proposed methods can be applied to black-box language models.
arXiv Detail & Related papers (2024-06-07T18:54:40Z) - Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning [12.490614705930676]
Current approaches to model-based offline Reinforcement Learning (RL) often incorporate uncertainty-based reward penalization.
We argue that this penalization introduces excessive conservatism, potentially resulting in suboptimal policies through underestimation.
We identify as an important cause of over-penalization the lack of a reliable uncertainty estimator capable of propagating uncertainties in the Bellman operator.
arXiv Detail & Related papers (2024-06-06T13:58:41Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - To Believe or Not to Believe Your LLM [51.2579827761899]
We explore uncertainty quantification in large language models (LLMs)
We derive an information-theoretic metric that allows to reliably detect when only epistemic uncertainty is large.
We conduct a series of experiments which demonstrate the advantage of our formulation.
arXiv Detail & Related papers (2024-06-04T17:58:18Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space [14.715989394285238]
Existing Large Language Models (LLMs) do not have an inherent functionality to provide the users with an uncertainty/confidence metric for each response it generates.
A new framework is proposed in this paper to address these issues.
Semantic density extracts uncertainty/confidence information for each response from a probability distribution perspective in semantic space.
arXiv Detail & Related papers (2024-05-22T17:13:49Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.