SUGAR: Leveraging Contextual Confidence for Smarter Retrieval
- URL: http://arxiv.org/abs/2501.04899v1
- Date: Thu, 09 Jan 2025 01:24:59 GMT
- Title: SUGAR: Leveraging Contextual Confidence for Smarter Retrieval
- Authors: Hanna Zubkova, Ji-Hoon Park, Seong-Whan Lee,
- Abstract summary: We introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR)
We leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval.
Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
- Score: 28.552283701883766
- License:
- Abstract: Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
Related papers
- DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)
By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.
Experiments show that DeepRAG improves retrieval efficiency while improving answer accuracy by 21.99%, demonstrating its effectiveness in optimizing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - RPO: Retrieval Preference Optimization for Robust Retrieval-Augmented Generation [33.85528514353727]
We introduce the Retrieval Preference Optimization (RPO) to adaptively leverage multi-source knowledge based on retrieval relevance.
RPO is the only RAG-dedicated alignment approach that quantifies the awareness of retrieval relevance in training.
Experiments on four datasets demonstrate that RPO outperforms RAG by 4-10% in accuracy without any extra component.
arXiv Detail & Related papers (2025-01-23T14:58:56Z) - To Retrieve or Not to Retrieve? Uncertainty Detection for Dynamic Retrieval Augmented Generation [3.724713116252253]
Uncertainty detection metrics can reduce the number of retrieval calls by almost half, with only a slight reduction in question-answering accuracy.
Our findings suggest that uncertainty detection metrics, such as Degree Matrix Jaccard and Eccentricity, can reduce the number of retrieval calls by almost half, with only a slight reduction in question-answering accuracy.
arXiv Detail & Related papers (2025-01-16T04:56:33Z) - DiverseAgentEntropy: Quantifying Black-Box LLM Uncertainty through Diverse Perspectives and Multi-Agent Interaction [53.803276766404494]
Existing methods, which gauge a model's uncertainty through evaluating self-consistency in responses to the original query, do not always capture true uncertainty.
We propose a novel method, DiverseAgentEntropy, for evaluating a model's uncertainty using multi-agent interaction.
Our method offers a more accurate prediction of the model's reliability and further detects hallucinations, outperforming other self-consistency-based methods.
arXiv Detail & Related papers (2024-12-12T18:52:40Z) - LoGU: Long-form Generation with Uncertainty Expressions [49.76417603761989]
We introduce the task of Long-form Generation with Uncertainty(LoGU)
We identify two key challenges: Uncertainty Suppression and Uncertainty Misalignment.
Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims.
Experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
arXiv Detail & Related papers (2024-10-18T09:15:35Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - LLM Uncertainty Quantification through Directional Entailment Graph and Claim Level Response Augmentation [5.255129053741665]
Large language models (LLMs) have showcased superior capabilities in sophisticated tasks across various domains, stemming from basic question-answer (QA)
This paper presents a novel way to evaluate the uncertainty that captures the directional instability, by constructing a directional graph from entailment probabilities.
We also provide a way to incorporate the existing work's semantics uncertainty with our proposed layer.
arXiv Detail & Related papers (2024-07-01T06:11:30Z) - Assessing "Implicit" Retrieval Robustness of Large Language Models [17.006566708461346]
We evaluate the "implicit" retrieval robustness of various large language models.
Fine-tuning on a mix of gold and distracting context significantly enhances the model's robustness to retrieval inaccuracies.
This suggests that large language models can implicitly handle relevant or irrelevant retrieved context by learning solely from the supervision of the final answer.
arXiv Detail & Related papers (2024-06-26T07:38:24Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.