論文の概要: Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
- arxiv url: http://arxiv.org/abs/2407.01115v1
- Date: Mon, 1 Jul 2024 09:24:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 22:09:47.030650
- Title: Enabling Mixed Effects Neural Networks for Diverse, Clustered Data Using Monte Carlo Methods
- Title(参考訳): モンテカルロ法による異種クラスタリングデータに対する混合効果ニューラルネットワークの提案
- Authors: Andrej Tschalzev, Paul Nitschke, Lukas Kirchdorfer, Stefan Lüdtke, Christian Bartelt, Heiner Stuckenschmidt,
- Abstract要約: 混合効果ニューラルネットワーク(MENN)はクラスタ固有の「ランダム効果」とクラスタ不変の「固定効果」を分離する
本稿では,モンテカルロ法による一般化混合効果ニューラルネットワークの学習手法であるMC-GMENNを提案する。
- 参考スコア(独自算出の注目度): 9.035959289139102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific 'random effects' from cluster-invariant 'fixed effects' have been proposed to improve generalization and interpretability for clustered data. However, existing methods only allow for approximate quantification of cluster effects and are limited to regression and binary targets with only one clustering feature. We present MC-GMENN, a novel approach employing Monte Carlo methods to train Generalized Mixed Effects Neural Networks. We empirically demonstrate that MC-GMENN outperforms existing mixed effects deep learning models in terms of generalization performance, time complexity, and quantification of inter-cluster variance. Additionally, MC-GMENN is applicable to a wide range of datasets, including multi-class classification tasks with multiple high-cardinality categorical features. For these datasets, we show that MC-GMENN outperforms conventional encoding and embedding methods, simultaneously offering a principled methodology for interpreting the effects of clustering patterns.
- Abstract(参考訳): ニューラルネットワークは入力データサンプル間で独立性を前提としており、実際のデータセット(例えば、異なるサイトや繰り返される測定結果)の固有のクラスタリングパターンから生じる相関を無視している。
近年,クラスタ固有の「ランダム効果」とクラスタ不変の「固定効果」を分離した混合効果ニューラルネットワーク(MENN)が提案され,クラスタ化データの一般化と解釈性の向上が図られている。
しかし、既存の手法ではクラスタ効果の近似的な定量化しかできず、1つのクラスタリング機能しか持たない回帰やバイナリターゲットに限られている。
本稿では,モンテカルロ法による一般化混合効果ニューラルネットワークの学習手法であるMC-GMENNを提案する。
我々は,MC-GMENNがクラスタ間分散の一般化性能,時間複雑性,定量化において,既存の混合効果深層学習モデルより優れていることを実証的に実証した。
さらに、MC-GMENNは、多クラス分類タスクを含む幅広いデータセットに適用できる。
これらのデータセットに対して,MC-GMENNは従来の符号化法や埋め込み法よりも優れており,クラスタリングパターンの効果を解釈するための原則的手法を同時に提供する。
関連論文リスト
- Ensemble Methods for Sequence Classification with Hidden Markov Models [8.241486511994202]
隠れマルコフモデル(HMM)のためのアンサンブル手法を用いたシーケンス分類への軽量なアプローチを提案する。
HMMは、その単純さ、解釈可能性、効率性のために、不均衡または小さいデータセットを持つシナリオにおいて、大きな利点を提供する。
アンサンブルに基づくスコアリング手法により,任意の長さのシーケンスの比較が可能となり,不均衡なデータセットの性能が向上する。
論文 参考訳(メタデータ) (2024-09-11T20:59:32Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Meta-Causal Feature Learning for Out-of-Distribution Generalization [71.38239243414091]
本稿では,協調タスク生成モジュール (BTG) とメタ因果特徴学習モジュール (MCFL) を含む,バランス付きメタ因果学習器 (BMCL) を提案する。
BMCLは、分類のためのクラス不変の視覚領域を効果的に識別し、最先端の手法の性能を向上させるための一般的なフレームワークとして機能する。
論文 参考訳(メタデータ) (2022-08-22T09:07:02Z) - Adversarially-regularized mixed effects deep learning (ARMED) models for
improved interpretability, performance, and generalization on clustered data [0.974672460306765]
混合効果モデルは、クラスタ固有のランダム効果からクラスター不変、集団レベルの固定効果を分離する。
本稿では,既存ネットワークへの3つの非侵襲的な付加を通じて,Adversarially-Regularized Mixed Effects Deep Learning (ARMED)モデルを構築するための汎用フレームワークを提案する。
この枠組みを, シミュレーション, 認知症予後診断, 細胞顕微鏡などの4つの応用に適用し, DFNN, 畳み込みニューラルネットワーク, オートエンコーダに適用した。
論文 参考訳(メタデータ) (2022-02-23T20:58:22Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDECは、共同統計表現学習とクラスタリングのための教師なしのフレームワークである。
実験により,これらの表現を用いることで,様々な画像データセットにまたがる不均衡な画像クラスタリングの結果を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2021-09-11T09:26:52Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - Neural Mixture Models with Expectation-Maximization for End-to-end Deep
Clustering [0.8543753708890495]
本稿では,ニューラルネットワークを用いた混合モデルに基づくクラスタリングを実現する。
我々は,Eステップとして前方パス,Mステップとして後方パスを動作させるバッチワイズEMイテレーションにより,ネットワークのエンドツーエンドをトレーニングする。
トレーニングされたネットワークは、k-meansに依存した単一ステージのディープクラスタリング手法よりも優れています。
論文 参考訳(メタデータ) (2021-07-06T08:00:58Z) - Unsupervised Clustered Federated Learning in Complex Multi-source
Acoustic Environments [75.8001929811943]
現実的で挑戦的なマルチソース・マルチルーム音響環境を導入する。
本稿では,音響シーンの変動を考慮したクラスタリング制御手法を提案する。
提案手法はクラスタリングに基づく測度を用いて最適化され,ネットワークワイド分類タスクによって検証される。
論文 参考訳(メタデータ) (2021-06-07T14:51:39Z) - Spectral clustering via adaptive layer aggregation for multi-layer
networks [6.0073653636512585]
有効凸層アグリゲーションに基づく積分スペクトルクラスタリング手法を提案する。
提案手法は, 広く用いられている手法と比較して, 極めて競争力が高いことを示す。
論文 参考訳(メタデータ) (2020-12-07T21:58:18Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。