論文の概要: Implementation of a scalable universal two-qubit quantum processor with electron and nuclear spins in a trapped ion
- arxiv url: http://arxiv.org/abs/2407.01196v1
- Date: Mon, 1 Jul 2024 11:40:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:49:58.235713
- Title: Implementation of a scalable universal two-qubit quantum processor with electron and nuclear spins in a trapped ion
- Title(参考訳): 電子スピンと核スピンを閉じ込めたスケーラブルな2量子ビット量子プロセッサの実装
- Authors: Ji Bian, Teng Liu, Qifeng Lao, Min Ding, Huiyi Zhang, Xinxin Rao, Pengfei Lu, Le Luo,
- Abstract要約: イオンの4つの内部レベルを利用したスケーラブルなn-イオン-2n量子ビットプロセッサを提案する。
電子スピンと1つの171Yb+イオンの核スピンを用いた1-イオン-2量子ビットユニバーサルプロセッサを実験的に実装した。
我々の研究は、n 個のイオンを持つ量子計算ヒルベルト空間のサイズが 2n 倍になるための道を開いた。
- 参考スコア(独自算出の注目度): 3.2872851729958867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Increasing the quantum information processing power with limited number of hosts is vital for achieving quantum advantage. Here we propose a novel scheme that achieves a scalable n-ion-2n-qubit quantum processor utilizing four internal levels of each ion, and experimentally implement a 1-ion-2-qubit universal processor using the valence electron spin and nuclear spin of a single 171Yb+ ion. Fidelities of single-qubit and two-qubit gates are around 0.98 obtained by quantum process tomography. Additionally, the Grover's algorithm is implemented with a successful rate exceeding 0.99. We provide explicit scaling-up protocols based on standard laser-less and laser-based frameworks, and further demonstrate that the electron/nuclear-spin scheme allows less demanding two-qubit entangling gates between different ions. The replacement of some inter-atomic gates by intra-atomic gates could increase the fidelity of some quantum circuits. Our work paves the way towards achieving 2n-times increase in the size of quantum computational Hilbert space with n ions.
- Abstract(参考訳): 限られた数のホストで量子情報処理能力を高めることは、量子上の優位性を達成するために不可欠である。
本稿では、各イオンの4つの内部レベルを利用したスケーラブルなn-イオン-2n量子ビット量子プロセッサを実現する新しい手法を提案し、原子価電子スピンと1つの171Yb+イオンの核スピンを用いた1-イオン-2量子ビットユニバーサルプロセッサを実験的に実装する。
単一量子ビットゲートと2量子ビットゲートの忠実度は、量子プロセストモグラフィーにより約0.98である。
さらに、Groverのアルゴリズムは0.99を超える成功率で実装されている。
我々は、標準のレーザーレスおよびレーザーベースのフレームワークに基づく明示的なスケールアッププロトコルを提供し、さらに、電子/原子スピンスキームが異なるイオン間の2量子エンタングゲートの要求を少なくすることを実証する。
原子間ゲートを原子間ゲートに置き換えることで、量子回路の忠実度が増大する可能性がある。
我々の研究は、n 個のイオンを持つ量子計算ヒルベルト空間のサイズが 2n 倍になるための道を開いた。
関連論文リスト
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
量子プロセッサは、考慮された基本的な分類タスクを正しく解くことができることを示す。
量子プロセッサの能力が向上するにつれ、機械学習の有用なツールになり得る。
論文 参考訳(メタデータ) (2024-06-17T18:20:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Tomography of entangling two-qubit logic operations in exchange-coupled
donor electron spin qubits [26.72272277499726]
量子プロセッサは高忠実な普遍量子論理演算を必要とする。
ドナー結合電子スピン間の絡み合いは今のところ証明されていない。
これらの結果は、ドナーベースの量子コンピュータのスケールアップに必要な基盤となる。
論文 参考訳(メタデータ) (2023-09-27T07:58:37Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
シリコン-ゲルマニウムヘテロ構造におけるゲート定義量子ドットは、量子計算とシミュレーションのための魅力的なプラットフォームとなっている。
ひずみゲルマニウム二重量子井戸におけるゲート定義垂直2重量子ドットの動作を実証する。
課題と機会を議論し、量子コンピューティングと量子シミュレーションの潜在的な応用について概説する。
論文 参考訳(メタデータ) (2023-05-23T13:42:36Z) - Universal quantum computing with qubits embedded in trapped-ion qudits [0.70224924046445]
Quditベースの量子コンピューティングの最近の発展は、物理情報キャリアの数を増やすことなく量子プロセッサをスケールする興味深い可能性を開く。
そこで本研究では,量子回路を量子ビットに埋め込んだ場合の量子回路のコンパイル手法を提案する。
論文 参考訳(メタデータ) (2023-02-06T17:54:09Z) - A shuttling-based two-qubit logic gate for linking distant silicon
quantum processors [0.0]
2量子ゲートを用いた遠方の量子プロセッサにおける量子ビット間の絡み合いの制御は、量子計算のスケーラブルでモジュラーな実装の重要な機能である。
ここでは、スピン量子ビット間のコヒーレントスピンシャットリングによる2量子ゲートを実証する。
論文 参考訳(メタデータ) (2022-02-03T01:04:48Z) - Precision tomography of a three-qubit donor quantum processor in silicon [38.42250061908039]
核スピンは、量子情報処理のために考慮された最初の物理プラットフォームの一つであった。
シリコンナノエレクトロニクスデバイスにイオンを注入した31Pドナー原子核を用いた普遍量子論理演算を実証する。
論文 参考訳(メタデータ) (2021-06-06T10:30:38Z) - Efficient, stabilized two-qubit gates on a trapped-ion quantum computer [4.547776040126478]
イオン鎖を閉じ込めた一対のイオン上にゲートを絡めるための最適なパルスを構築するための2つの方法を提案する。
これらのトレードオフを、捕捉されたイオン量子コンピュータ上で説明します。
論文 参考訳(メタデータ) (2021-01-19T22:40:28Z) - Universal quantum computation and quantum error correction with
ultracold atomic mixtures [47.187609203210705]
長距離エンタングゲートを用いた普遍量子計算のためのプラットフォームとして、2種の超低温原子種を混合して提案する。
1つの原子種は、情報の基本単位を形成する可変長の局所化された集合スピンを実現する。
本稿では,ゴッテマン・キタエフ・プレスキル符号の有限次元バージョンについて論じ,集合スピンに符号化された量子情報を保護する。
論文 参考訳(メタデータ) (2020-10-29T20:17:14Z) - Conditional quantum operation of two exchange-coupled single-donor spin
qubits in a MOS-compatible silicon device [48.7576911714538]
シリコンナノエレクトロニクスデバイスは、99.9%以上の忠実度を持つ単一量子ビット量子論理演算をホストすることができる。
イオン注入によりシリコン中に導入された単一のドナー原子に結合した電子のスピンに対して、量子情報は1秒近く保存することができる。
ここでは、シリコンに埋め込まれた31ドルPドナーの交換結合対における電子スピン量子ビットの条件付きコヒーレント制御を実証する。
論文 参考訳(メタデータ) (2020-06-08T11:25:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。