論文の概要: SGCCNet: Single-Stage 3D Object Detector With Saliency-Guided Data Augmentation and Confidence Correction Mechanism
- arxiv url: http://arxiv.org/abs/2407.01239v1
- Date: Mon, 1 Jul 2024 12:36:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 21:39:54.716510
- Title: SGCCNet: Single-Stage 3D Object Detector With Saliency-Guided Data Augmentation and Confidence Correction Mechanism
- Title(参考訳): SGCCNet:Saliency-Guided Data Augmentation and Confidence Correction Mechanism付き単段3Dオブジェクト検出器
- Authors: Ao Liang, Wenyu Chen, Jian Fang, Huaici Zhao,
- Abstract要約: 単一段階点ベース3次元物体検出器は、低品質物体(ILQ)の不十分な学習や、局所化精度と分類信頼度(MLC)の不一致といった課題に直面している。
ILQでは、SGCCNetがSaliency-Guided Data Augmentation(SGDA)戦略を採用し、低品質オブジェクトに対するモデルの堅牢性を高める。
MLCでは、ポイントベースマルチクラス検出器に特化して信頼性補正機構(CCM)を設計する。
- 参考スコア(独自算出の注目度): 7.631190617438259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The single-stage point-based 3D object detectors have attracted widespread research interest due to their advantages of lightweight and fast inference speed. However, they still face challenges such as inadequate learning of low-quality objects (ILQ) and misalignment between localization accuracy and classification confidence (MLC). In this paper, we propose SGCCNet to alleviate these two issues. For ILQ, SGCCNet adopts a Saliency-Guided Data Augmentation (SGDA) strategy to enhance the robustness of the model on low-quality objects by reducing its reliance on salient features. Specifically, We construct a classification task and then approximate the saliency scores of points by moving points towards the point cloud centroid in a differentiable process. During the training process, SGCCNet will be forced to learn from low saliency features through dropping points. Meanwhile, to avoid internal covariate shift and contextual features forgetting caused by dropping points, we add a geometric normalization module and skip connection block in each stage. For MLC, we design a Confidence Correction Mechanism (CCM) specifically for point-based multi-class detectors. This mechanism corrects the confidence of the current proposal by utilizing the predictions of other key points within the local region in the post-processing stage. Extensive experiments on the KITTI dataset demonstrate the generality and effectiveness of our SGCCNet. On the KITTI \textit{test} set, SGCCNet achieves $80.82\%$ for the metric of $AP_{3D}$ on the \textit{Moderate} level, outperforming all other point-based detectors, surpassing IA-SSD and Fast Point R-CNN by $2.35\%$ and $3.42\%$, respectively. Additionally, SGCCNet demonstrates excellent portability for other point-based detectors
- Abstract(参考訳): 単一ステージの点に基づく3Dオブジェクト検出器は、軽量で高速な推論速度の利点から、広く研究の関心を集めている。
しかし、低品質オブジェクト(ILQ)の不十分な学習や、ローカライゼーション精度と分類信頼度(MLC)の相違といった課題に直面している。
本稿では,この2つの問題を緩和するためにSGCCNetを提案する。
ILQでは、SGCCNetはSaliency-Guided Data Augmentation(SGDA)戦略を採用し、Salient機能への依存を減らすことにより、低品質オブジェクトに対するモデルの堅牢性を高める。
具体的には、分類タスクを構築し、その後、微分可能なプロセスで点を点雲セントロイドへ移動させることにより、点の正当性スコアを近似する。
トレーニングプロセスの間、SGCCNetはポイントを落として、低い唾液度の特徴から学ぶことを余儀なくされる。
一方,各ステージに幾何正規化モジュールと接続ブロックをスキップする。
MLCでは、ポイントベースマルチクラス検出器に特化して信頼性補正機構(CCM)を設計する。
このメカニズムは、後処理段階における局所領域内の他のキーポイントの予測を利用して、現在の提案の信頼性を補正する。
KITTIデータセットの大規模な実験は、SGCCNetの汎用性と有効性を示している。
KITTI \textit{test} セットでは、SGCCNet は$AP_{3D}$の計量に対して 80.82\%$ を獲得し、IA-SSD と Fast Point R-CNN をそれぞれ 2.35\%$ と $3.42\%$ で上回り、他の点ベースの検出器より優れている。
さらに、SGCCNetは、他の点ベース検出器に対する優れたポータビリティを示す
関連論文リスト
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
トランスフォーマーベースのモデルは、自己認識機構を活用することにより、先進的なポイントクラウド理解を持つ。
PointACLは、これらの制限に対処するために設計された、注意駆動のコントラスト学習フレームワークである。
本手法では, 注意駆動型動的マスキング手法を用いて, モデルが非集中領域に集中するように誘導する。
論文 参考訳(メタデータ) (2024-11-22T05:41:00Z) - PointCore: Efficient Unsupervised Point Cloud Anomaly Detector Using
Local-Global Features [18.32982981001087]
我々は、PointCoreと呼ばれる、共同でローカル・グローバルな特徴に基づく、教師なしのポイントクラウド異常検出フレームワークを提案する。
具体的に言うと、PointCoreはローカル(コーディネート)とグローバル(PointMAE)表現を保存するために、単一のメモリバンクしか必要としない。
Real3D-ADデータセットの実験では、PointCoreは検出とローカライゼーションの両方において、競合する推論時間と最高のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-04T07:51:46Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
半教師付き学習(SSL)は大規模3Dシーン理解のための活発な研究課題である。
既存のSSLベースのメソッドは、クラス不均衡とポイントクラウドデータのロングテール分布による厳しいトレーニングバイアスに悩まされている。
本稿では,特徴表現学習と分類器を別の最適化方法で切り離してバイアス決定境界を効果的にシフトする,新しいデカップリング最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-13T04:16:40Z) - CSI: Enhancing the Robustness of 3D Point Cloud Recognition against
Corruption [33.70232326721406]
現実世界の安全クリティカルなアプリケーションは、避けられないデータ破損による課題を提示する。
本研究では、ポイントクラウドデータ固有の設定特性を利用して、新しいクリティカルサブセット識別(CSI)手法を導入する。
我々のCSIフレームワークは、密度認識サンプリング(DAS)と自己エントロピー最小化(SEM)の2つの重要なコンポーネントを統合している。
論文 参考訳(メタデータ) (2023-10-05T07:30:52Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Revisiting Domain-Adaptive 3D Object Detection by Reliable, Diverse and
Class-balanced Pseudo-Labeling [38.07637524378327]
ドメイン適応型3Dオブジェクト検出において,疑似ラベリング技術を用いた教師なしドメイン適応(DA)が重要なアプローチとして浮上している。
既存のDAメソッドは、マルチクラスのトレーニング環境に適用した場合、パフォーマンスが大幅に低下する。
本稿では,すべてのクラスを一度に検出する学習に適した新しいReDBフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-16T04:34:11Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
我々は、ラベルの取得に最も有用なポイントクラウドを特定するために、新しいカーネル戦略を利用する。
1段目(SECOND)と2段目(SECOND)の両方に対応するため、アノテーションに選択した境界ボックスの総数と検出性能のトレードオフをよく組み込んだ分類エントロピー接点を組み込んだ。
その結果,ボックスレベルのアノテーションのコストは約44%,計算時間は26%削減された。
論文 参考訳(メタデータ) (2023-07-16T04:27:03Z) - 3D Object Detection Combining Semantic and Geometric Features from Point
Clouds [19.127930862527666]
そこで本研究では,SGNetと呼ばれる2次元物体検出装置を提案する。
VTPMはVoxel-Point-Based Moduleであり、最終的に点空間で3Dオブジェクト検出を実装している。
2021年9月19日時点で、KITTIデータセットでは、SGNetは、難易度の高いサイクリストの3DおよびBEV検出で1位、適度なサイクリストの3D検出では2位であった。
論文 参考訳(メタデータ) (2021-10-10T04:43:27Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
本研究では,各位置のアンカーを相互依存関係としてモデル化したScopeNetと呼ばれる新しい検出器を提案する。
我々の簡潔で効果的な設計により、提案したScopeNetはCOCOの最先端の成果を達成する。
論文 参考訳(メタデータ) (2020-05-11T04:00:09Z) - Triangle-Net: Towards Robustness in Point Cloud Learning [0.0]
本稿では, 回転, 位置シフト, スケーリングに対する不変性を同時に実現し, 点間隔に頑健な3次元分類手法を提案する。
提案手法は,ModelNet 40分類タスクにおいて,ポイントネットと3DmFVをそれぞれ35.0%,28.1%で上回っている。
論文 参考訳(メタデータ) (2020-02-27T20:42:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。