論文の概要: GAT-Steiner: Rectilinear Steiner Minimal Tree Prediction Using GNNs
- arxiv url: http://arxiv.org/abs/2407.01440v1
- Date: Mon, 1 Jul 2024 16:32:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 20:41:15.472250
- Title: GAT-Steiner: Rectilinear Steiner Minimal Tree Prediction Using GNNs
- Title(参考訳): GAT-Steiner:GNNを用いたリクチリニアステイナ最小木予測
- Authors: Bugra Onal, Eren Dogan, Muhammad Hadir Khan, Matthew R. Guthaus,
- Abstract要約: グラフニューラルネットワーク(GNN)を用いて,RSMTにおける最適なスタイナー点を高精度に予測できることを示す。
我々は、ISPD19ベンチマークにおいて、ネットの99.846%を正確に予測するグラフアテンションネットワークモデルであるGAT-Steinerを提案する。
ランダムに生成されたベンチマークでは、GAT-Steinerは99.942%を正確に予測し、準最適ワイヤ長ネットでは平均で0.420%しか増加しない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Rectilinear Steiner Minimum Tree (RSMT) problem is a fundamental problem in VLSI placement and routing and is known to be NP-hard. Traditional RSMT algorithms spend a significant amount of time on finding Steiner points to reduce the total wire length or use heuristics to approximate producing sub-optimal results. We show that Graph Neural Networks (GNNs) can be used to predict optimal Steiner points in RSMTs with high accuracy and can be parallelized on GPUs. In this paper, we propose GAT-Steiner, a graph attention network model that correctly predicts 99.846% of the nets in the ISPD19 benchmark with an average increase in wire length of only 0.480% on suboptimal wire length nets. On randomly generated benchmarks, GAT-Steiner correctly predicts 99.942% with an average increase in wire length of only 0.420% on suboptimal wire length nets.
- Abstract(参考訳): Rectilinear Steiner Minimum Tree (RSMT) 問題は、VLSI配置とルーティングの基本的な問題であり、NPハードであることが知られている。
従来のRSMTアルゴリズムは、スタイナー点の発見にかなりの時間を費やして全線長を減らしたり、ヒューリスティックスを用いて準最適結果を生成する。
グラフニューラルネットワーク(GNN)は,RSMTにおける最適なスタイナー点を高精度に予測し,GPU上で並列化可能であることを示す。
本稿では,ISPD19 ベンチマークにおける網の99.846%を正確に予測するグラフアテンションネットワークモデル GAT-Steiner を提案する。
ランダムに生成されたベンチマークでは、GAT-Steinerは99.942%を正確に予測し、準最適ワイヤ長ネットでは平均で0.420%しか増加しない。
関連論文リスト
- NeuroSteiner: A Graph Transformer for Wirelength Estimation [4.043138617363288]
WL推定のコスト-精度フロンティアをナビゲートするために、最適なRSMTソルバであるGeoSteinerを蒸留するニューラルネットワークであるNeuroSteinerを提案する。
NeuroSteinerはGeoSteinerによってラベル付けされた合成ネットでトレーニングされており、実際のチップ設計でトレーニングする必要がなくなる。
ISPD 2005と2019では、NeuroSteinerはGeoSteinerよりも60%速く、0.2%と30%のエラーを得られる。
論文 参考訳(メタデータ) (2024-07-04T09:55:22Z) - Towards Generalized Entropic Sparsification for Convolutional Neural Networks [0.0]
畳み込みニューラルネットワーク(CNN)は過度にパラメータ化されていると報告されている。
本稿では,計算可能エントロピー緩和を目的とした数学的アイデアに基づく層間データ駆動プルーニング手法を提案する。
スパースサブネットワークは、ネットワークエントロピー最小化をスペーサ性制約として使用した、事前訓練された(フル)CNNから得られる。
論文 参考訳(メタデータ) (2024-04-06T21:33:39Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - Input Normalized Stochastic Gradient Descent Training of Deep Neural
Networks [2.1485350418225244]
本稿では,入力正規化勾配 Descent (INSGD) と呼ばれる機械学習モデルを学習するための新しい最適化アルゴリズムを提案する。
我々のアルゴリズムは,NLMSと同様,学習速度に適用した$ell_$および$ell_$ベースの正規化を用いて,勾配勾配を用いてネットワーク重みを更新する。
本稿では,ResNet-18,WResNet-20,ResNet-50,玩具ニューラルネットワークを用いて,ベンチマークデータセット上でのトレーニングアルゴリズムの有効性を評価する。
論文 参考訳(メタデータ) (2022-12-20T00:08:37Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
2層ReLUネットワークに必要なニューロン数を著しく削減する方法を示す。
また、事前の作業を改善するための新しい下位境界を証明し、ある仮定の下では、最善を尽くすことができることを証明します。
論文 参考訳(メタデータ) (2022-06-26T06:51:31Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Scalable Optimal Transport in High Dimensions for Graph Distances,
Embedding Alignment, and More [7.484063729015126]
最適輸送のためのコスト行列の2つの効率的な対数線形時間近似を提案する。
これらの近似は、複雑な高次元空間に対してもよく機能するエントロピー規則化OTに対する一般的な対数線形時間アルゴリズムを可能にする。
グラフ距離回帰のために,グラフニューラルネットワーク(GNN)と拡張シンクホーンを組み合わせたグラフトランスポートネットワーク(GTN)を提案する。
論文 参考訳(メタデータ) (2021-07-14T17:40:08Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGATは、スペクトルスペーシフィケーションを用いて、注目に基づくGNNを軽量にし、入力グラフの最適プルーニングを生成する手法である。
我々は,ノード分類タスクのための大規模実世界のグラフデータセット上でFastGATを実験的に評価した。
論文 参考訳(メタデータ) (2020-06-15T22:07:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。