論文の概要: Online Learning of Temporal Dependencies for Sustainable Foraging Problem
- arxiv url: http://arxiv.org/abs/2407.01501v1
- Date: Mon, 1 Jul 2024 17:47:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 20:21:46.305511
- Title: Online Learning of Temporal Dependencies for Sustainable Foraging Problem
- Title(参考訳): 持続的捕食問題に対する時間依存のオンライン学習
- Authors: John Payne, Aishwaryaprajna, Peter R. Lewis,
- Abstract要約: 持続可能な採餌問題は、マルチエージェント環境での社会的ジレンマを扱う際のエージェント認知の形式を探究するための動的環境テストベッドである。
本稿では,ニューロ進化とディープ・リカレントQ-ネットワークスにおけるオンライン学習の手法を検討する。
その結果, 長期記憶支援エージェントの統合は, 単一エージェントの持続可能な戦略開発に有効であったが, 多エージェントシナリオにおいて生じる社会的ジレンマの管理には役に立たなかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The sustainable foraging problem is a dynamic environment testbed for exploring the forms of agent cognition in dealing with social dilemmas in a multi-agent setting. The agents need to resist the temptation of individual rewards through foraging and choose the collective long-term goal of sustainability. We investigate methods of online learning in Neuro-Evolution and Deep Recurrent Q-Networks to enable agents to attempt the problem one-shot as is often required by wicked social problems. We further explore if learning temporal dependencies with Long Short-Term Memory may be able to aid the agents in developing sustainable foraging strategies in the long term. It was found that the integration of Long Short-Term Memory assisted agents in developing sustainable strategies for a single agent, however failed to assist agents in managing the social dilemma that arises in the multi-agent scenario.
- Abstract(参考訳): 持続可能な採餌問題は、マルチエージェント環境での社会的ジレンマを扱う際のエージェント認知の形式を探究するための動的環境テストベッドである。
エージェントは、食餌を通じて個人の報酬の誘惑に抵抗し、持続可能性という集合的な長期的な目標を選択する必要がある。
本稿では,ニューロ進化とディープ・リカレントQ-ネットワークスにおけるオンライン学習の手法を検討した。
さらに,長期記憶による時間的依存関係の学習が,長期にわたる持続的捕食戦略の発達に役立てられるかどうかについても検討する。
その結果, 長期記憶支援エージェントの統合は, 単一エージェントの持続可能な戦略開発に有効であったが, 多エージェントシナリオにおいて生じる社会的ジレンマの管理には役に立たなかった。
関連論文リスト
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - Challenges Faced by Large Language Models in Solving Multi-Agent Flocking [17.081075782529098]
フラッキング(Flocking)とは、システム内の複数のエージェントが衝突を避け、望ましい形成を維持しながら互いに近づこうとする行動である。
近年,大規模言語モデル (LLM) は,個々の意思決定者として様々な協調課題を解くという印象的な能力を示している。
本稿では,マルチエージェント・フロッキングにおいてLLMが直面する課題について論じ,今後の改善分野を提案する。
論文 参考訳(メタデータ) (2024-04-06T22:34:07Z) - On Diagnostics for Understanding Agent Training Behaviour in Cooperative
MARL [5.124364759305485]
我々は、経験的リターンのみに依存することは、エージェントの振る舞いに不明瞭な重要な洞察を与えるかもしれないと論じる。
本稿では,エージェントの動作に対する深い洞察を得るために,説明可能なAI(XAI)ツールの適用について検討する。
論文 参考訳(メタデータ) (2023-12-13T19:10:10Z) - Self-Sustaining Multiple Access with Continual Deep Reinforcement
Learning for Dynamic Metaverse Applications [17.436875530809946]
Metaverseは,さまざまな世界で構成される仮想環境の構築を目的とした,新たなパラダイムだ。
このような動的で複雑なシナリオに対処するためには、自己維持戦略を採用する方法が考えられる。
本稿では,知的エージェントのスループットを最大化するために,マルチチャネル環境におけるマルチアクセスの問題について検討する。
論文 参考訳(メタデータ) (2023-09-18T22:02:47Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - Coordinated Online Learning for Multi-Agent Systems with Coupled
Constraints and Perturbed Utility Observations [91.02019381927236]
本研究では, 資源制約を満たすため, エージェントを安定な集団状態へ誘導する新しい手法を提案する。
提案手法は,ゲームラグランジアンの拡張によるリソース負荷に基づく分散リソース価格設定手法である。
論文 参考訳(メタデータ) (2020-10-21T10:11:17Z) - Emergent Social Learning via Multi-agent Reinforcement Learning [91.57176641192771]
社会学習は、人間と動物の知性の重要な構成要素である。
本稿では,独立系強化学習エージェントが,社会的学習を用いてパフォーマンスを向上させることを学べるかどうかを検討する。
論文 参考訳(メタデータ) (2020-10-01T17:54:14Z) - Leveraging Multi-level Dependency of Relational Sequences for Social
Spammer Detection [14.203689072168672]
MDM(Multi-level Dependency Model)は、リレーショナルシーケンスに隠されたユーザの長期依存を活用できる。
実世界のマルチリレーショナルソーシャルネットワークにおける実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-09-14T07:11:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。