論文の概要: Fish-bone diagram of research issue: Gain a bird's-eye view on a specific research topic
- arxiv url: http://arxiv.org/abs/2407.01553v2
- Date: Thu, 11 Jul 2024 02:18:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 22:08:28.071791
- Title: Fish-bone diagram of research issue: Gain a bird's-eye view on a specific research topic
- Title(参考訳): 研究課題の魚骨図--特定の研究トピックを鳥眼で見る
- Authors: JingHong Li, Huy Phan, Wen Gu, Koichi Ota, Shinobu Hasegawa,
- Abstract要約: 本研究の目的は、因果関係を含む魚骨図を提供することによって、初心者研究者を支援することである。
それは、関連性および論理的要因に基づいて、研究分野の幅広い、高度に一般化された視点を提供する。
- 参考スコア(独自算出の注目度): 11.556954590485319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Novice researchers often face difficulties in understanding a multitude of academic papers and grasping the fundamentals of a new research field. To solve such problems, the knowledge graph supporting research survey is gradually being developed. Existing keyword-based knowledge graphs make it difficult for researchers to deeply understand abstract concepts. Meanwhile, novice researchers may find it difficult to use ChatGPT effectively for research surveys due to their limited understanding of the research field. Without the ability to ask proficient questions that align with key concepts, obtaining desired and accurate answers from this large language model (LLM) could be inefficient. This study aims to help novice researchers by providing a fish-bone diagram that includes causal relationships, offering an overview of the research topic. The diagram is constructed using the issue ontology from academic papers, and it offers a broad, highly generalized perspective of the research field, based on relevance and logical factors. Furthermore, we evaluate the strengths and improvable points of the fish-bone diagram derived from this study's development pattern, emphasizing its potential as a viable tool for supporting research survey.
- Abstract(参考訳): 初心者研究者は、多くの学術論文を理解し、新しい研究分野の基礎を把握することの難しさに直面することが多い。
このような問題を解決するため、知識グラフ研究支援調査が徐々に発展しつつある。
既存のキーワードベースの知識グラフは、研究者が抽象概念を深く理解することが困難である。
一方、初心者研究者は、研究分野の理解が限られているため、ChatGPTを研究調査に効果的に利用することは困難である可能性がある。
この大きな言語モデル(LLM)から希望的かつ正確な回答を得ることは、重要な概念に合致する熟練した質問を問う能力がなければ、非効率である可能性がある。
本研究は, 因果関係を含む魚骨図を提供することにより, 初心者研究者を支援することを目的としている。
ダイアグラムは学術論文の課題オントロジーを用いて構築され、関連性と論理的要因に基づいて、研究分野の幅広い、高度に一般化された視点を提供する。
さらに,本研究の展開パターンから得られた魚骨図の強度と即効点を評価し,本研究を支援するための有効なツールとしての可能性を強調した。
関連論文リスト
- A Survey Forest Diagram : Gain a Divergent Insight View on a Specific Research Topic [2.699900017799093]
情報検索や質問応答におけるジェネレーティブAIの利用は,研究調査の実施に人気がある。
本研究は,本研究を対象とする未成年研究者を対象とした詳細な調査林図を作成することを目的としている。
論文 参考訳(メタデータ) (2024-07-24T08:17:37Z) - Hierarchical Tree-structured Knowledge Graph For Academic Insight Survey [11.556954590485319]
調査は、研究トレーニングを欠いている初心者研究者にとって、常に課題となっている。
本研究は,階層的な木構造知識グラフを確立することにより,初心者研究者を対象とした研究インサイトサーベイを支援することを目的とする。
論文 参考訳(メタデータ) (2024-02-07T13:54:06Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
本稿では、因果発見と推論技術を用いて、科学分野における研究トピックの進化を分析するための体系的な枠組みを提案する。
我々は3つの変数を定義し、NLPにおける研究トピックの進化の多様な側面を包含する。
我々は因果探索アルゴリズムを用いてこれらの変数間の因果関係を明らかにする。
論文 参考訳(メタデータ) (2023-05-22T11:08:00Z) - Parsing Objects at a Finer Granularity: A Survey [54.72819146263311]
微細な視覚解析は、農業、リモートセンシング、宇宙技術など、多くの現実世界の応用において重要である。
卓越した研究努力は、異なるパラダイムに従って、これらのきめ細かいサブタスクに取り組む。
我々は,パート関係を学習する新たな視点から,先進的な研究を深く研究する。
論文 参考訳(メタデータ) (2022-12-28T04:20:10Z) - Reasoning with Language Model Prompting: A Survey [86.96133788869092]
推論は複雑な問題解決に不可欠な能力であり、様々な現実世界のアプリケーションに対するバックエンドサポートを提供することができる。
本稿では,言語モデルによる推論に関する最先端の研究を包括的に調査する。
論文 参考訳(メタデータ) (2022-12-19T16:32:42Z) - An information-theoretic perspective on intrinsic motivation in
reinforcement learning: a survey [0.0]
本稿では,これらの研究成果を情報理論に基づく新たな分類法を用いて調査することを提案する。
我々は、サプライズ、ノベルティ、スキル学習の概念を計算的に再考する。
我々の分析は、新規性とサプライズがトランスファー可能なスキルの階層を構築するのに役立つことを示唆している。
論文 参考訳(メタデータ) (2022-09-19T09:47:43Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Research Scholar Interest Mining Method based on Load Centrality [15.265191824669555]
本稿では,負荷集中度に基づく研究研究者の関心マイニングアルゴリズムを提案する。
各トピックの地域構造は、ノードの集中度研究モデルの重みを正確に計算するために使用することができる。
本稿では, 負荷率センタに基づく科学的研究協力により, 科学的研究研究者の関心を効果的に抽出することができる。
論文 参考訳(メタデータ) (2022-03-21T04:16:46Z) - Fine-Grained Image Analysis with Deep Learning: A Survey [146.22351342315233]
きめ細かい画像解析(FGIA)は、コンピュータビジョンとパターン認識における長年の根本的な問題である。
本稿では、FGIAの分野を再定義し、FGIAの2つの基礎研究領域、細粒度画像認識と細粒度画像検索を統合することで、FGIAの分野を広げようとしている。
論文 参考訳(メタデータ) (2021-11-11T09:43:56Z) - Scientia Potentia Est -- On the Role of Knowledge in Computational
Argumentation [52.903665881174845]
本稿では,計算議論に必要な知識のピラミッドを提案する。
この分野におけるこれらのタイプの役割と統合について,その技術の現状を簡潔に論じる。
論文 参考訳(メタデータ) (2021-07-01T08:12:41Z) - Topic Diffusion Discovery Based on Deep Non-negative Autoencoder [0.0]
本稿では,話題拡散の監視に情報分散計測を用いたディープ非負のオートエンコーダを提案する。
提案手法は,研究トピックの進化と,オンライン手法による話題拡散の発見を可能にする。
論文 参考訳(メタデータ) (2020-10-08T00:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。