Unleash the Power of Local Representations for Few-Shot Classification
- URL: http://arxiv.org/abs/2407.01967v1
- Date: Tue, 2 Jul 2024 05:51:04 GMT
- Title: Unleash the Power of Local Representations for Few-Shot Classification
- Authors: Shi Tang, Guiming Luo, Xinchen Ye, Zhiyi Xia,
- Abstract summary: Generalizing to novel classes unseen during training is a key challenge of few-shot classification.
Recent metric-based methods try to address this by local representations.
In this work, we unleash the power of local representations in improving novel-class generalization.
- Score: 6.722306005855269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generalizing to novel classes unseen during training is a key challenge of few-shot classification. Recent metric-based methods try to address this by local representations. However, they are unable to take full advantage of them due to (i) improper supervision for pretraining the feature extractor, and (ii) lack of adaptability in the metric for handling various possible compositions of local feature sets. In this work, we unleash the power of local representations in improving novel-class generalization. For the feature extractor, we design a novel pretraining paradigm that learns randomly cropped patches by soft labels. It utilizes the class-level diversity of patches while diminishing the impact of their semantic misalignments to hard labels. To align network output with soft labels, we also propose a UniCon KL-Divergence that emphasizes the equal contribution of each base class in describing "non-base" patches. For the metric, we formulate measuring local feature sets as an entropy-regularized optimal transport problem to introduce the ability to handle sets consisting of homogeneous elements. Furthermore, we design a Modulate Module to endow the metric with the necessary adaptability. Our method achieves new state-of-the-art performance on three popular benchmarks. Moreover, it exceeds state-of-the-art transductive and cross-modal methods in the fine-grained scenario.
Related papers
- Semantic Enhanced Few-shot Object Detection [37.715912401900745]
We propose a fine-tuning based FSOD framework that utilizes semantic embeddings for better detection.
Our method allows each novel class to construct a compact feature space without being confused with similar base classes.
arXiv Detail & Related papers (2024-06-19T12:40:55Z) - Class Similarity Transition: Decoupling Class Similarities and Imbalance from Generalized Few-shot Segmentation [17.33292771556997]
This paper focuses on the relevance between base and novel classes, and improves Generalized Few-shot (GFSS)
We first propose a similarity transition matrix to guide the learning of novel classes with base class knowledge.
We then leverage the Label-Distribution-Aware Margin (LDAM) loss and Transductive Inference to the GFSS task to address the problem of class imbalance.
arXiv Detail & Related papers (2024-04-08T00:13:05Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Scribble Hides Class: Promoting Scribble-Based Weakly-Supervised
Semantic Segmentation with Its Class Label [16.745019028033518]
We propose a class-driven scribble promotion network, which utilizes both scribble annotations and pseudo-labels informed by image-level classes and global semantics for supervision.
Experiments on the ScribbleSup dataset with different qualities of scribble annotations outperform all the previous methods, demonstrating the superiority and robustness of our method.
arXiv Detail & Related papers (2024-02-27T14:51:56Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
In this paper, contextual hints are exploited via learning a context-aware classifier.
Our method is model-agnostic and can be easily applied to generic segmentation models.
With only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models.
arXiv Detail & Related papers (2023-03-21T07:00:35Z) - Self-Adaptive Label Augmentation for Semi-supervised Few-shot
Classification [121.63992191386502]
Few-shot classification aims to learn a model that can generalize well to new tasks when only a few labeled samples are available.
We propose a semi-supervised few-shot classification method that assigns an appropriate label to each unlabeled sample by a manually defined metric.
A major novelty of SALA is the task-adaptive metric, which can learn the metric adaptively for different tasks in an end-to-end fashion.
arXiv Detail & Related papers (2022-06-16T13:14:03Z) - Incremental Few-Shot Learning via Implanting and Compressing [13.122771115838523]
Incremental Few-Shot Learning requires a model to continually learn novel classes from only a few examples.
We propose a two-step learning strategy referred to as textbfImplanting and textbfCompressing.
Specifically, in the textbfImplanting step, we propose to mimic the data distribution of novel classes with the assistance of data-abundant base set.
In the textbf step, we adapt the feature extractor to precisely represent each novel class for enhancing intra-class compactness.
arXiv Detail & Related papers (2022-03-19T11:04:43Z) - Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal
and Clustered Embeddings [25.137859989323537]
We propose an effective Unsupervised Domain Adaptation (UDA) strategy, based on a feature clustering method.
We introduce two novel learning objectives to enhance the discriminative clustering performance.
arXiv Detail & Related papers (2020-11-25T10:06:22Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z) - Rethinking Generative Zero-Shot Learning: An Ensemble Learning
Perspective for Recognising Visual Patches [52.67723703088284]
We propose a novel framework called multi-patch generative adversarial nets (MPGAN)
MPGAN synthesises local patch features and labels unseen classes with a novel weighted voting strategy.
MPGAN has significantly greater accuracy than state-of-the-art methods.
arXiv Detail & Related papers (2020-07-27T05:49:44Z) - Federated Learning with Only Positive Labels [71.63836379169315]
We propose a generic framework for training with only positive labels, namely Federated Averaging with Spreadout (FedAwS)
We show, both theoretically and empirically, that FedAwS can almost match the performance of conventional learning where users have access to negative labels.
arXiv Detail & Related papers (2020-04-21T23:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.