論文の概要: Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
- arxiv url: http://arxiv.org/abs/2407.01991v2
- Date: Tue, 16 Jul 2024 11:41:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-17 20:29:52.434110
- Title: Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
- Title(参考訳): アクター・クリティカル強化学習による測地線の生成と中間点の予測
- Authors: Kazumi Kasaura,
- Abstract要約: 提案手法は,局所的・グローバルな経路計画タスクにおいて,既存の手法よりも優れていることを示す。
提案手法は,提案手法が局所的・グローバルな経路計画タスクにおいて既存手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 1.6317061277457001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To find the shortest paths for all pairs on manifolds with infinitesimally defined metrics, we propose to generate them by predicting midpoints recursively and an actor-critic method to learn midpoint prediction. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on both local and global path planning tasks.
- Abstract(参考訳): 無限小に定義された測度を持つ多様体上のすべての対の最も短い経路を見つけるために、中間点を再帰的に予測し、中間点予測を学ぶアクター・クリティカルな方法を提案する。
提案手法は,提案手法が局所的・グローバルな経路計画タスクにおいて既存手法よりも優れていることを示す。
関連論文リスト
- Enhancing Path Planning Performance through Image Representation Learning of High-Dimensional Configuration Spaces [0.4143603294943439]
障害物のある未知のシーンにおける経路計画タスクを高速化する新しい手法を提案する。
高速探索ランダムツリーアルゴリズムを用いて,衝突のない経路の経路点分布を近似した。
本実験は,臨界時間制約下での経路計画タスクを高速化する有望な結果を実証する。
論文 参考訳(メタデータ) (2025-01-11T21:14:52Z) - Spatial Clustering Approach for Vessel Path Identification [3.2230949286556627]
位置情報のみを用いて船舶経路をラベル付けするための空間クラスタリング手法を提案する。
距離に基づく経路モデリングと確率推定という2つの手法を用いた経路クラスタリングフレームワークを開発した。
論文 参考訳(メタデータ) (2024-03-09T03:21:18Z) - LanePtrNet: Revisiting Lane Detection as Point Voting and Grouping on
Curves [8.037214110171123]
車線検出は、自動運転の分野において重要な役割を果たす。
本稿では,順序付き集合上での点投票とグループ化のプロセスとしてレーン検出を扱う新しいアプローチであるLanePtrNetを提案する。
提案手法の有効性を検証するための総合的な実験を行い,その性能を実証した。
論文 参考訳(メタデータ) (2024-03-08T08:45:42Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision [2.365702128814616]
正確な車両軌道予測は、自動運転における未解決の問題である。
本稿では,複数の軌道セグメントを連結した中間層を提案する。
提案するマルチブランチ・セルフスーパービジョン予測器は,中間将来のセグメントから始まる新しい予測について追加の訓練を受ける。
論文 参考訳(メタデータ) (2023-06-06T02:46:28Z) - An approach to robust ICP initialization [77.45039118761837]
本稿では,厳密な変換に伴う乱れのない点群に対応するために,ICPアルゴリズムを初期化する手法を提案する。
我々はノイズに対する我々のアプローチの頑健さに限界を導出し、数値実験により我々の理論的な知見を裏付ける。
論文 参考訳(メタデータ) (2022-12-10T16:27:25Z) - S$^*$: A Heuristic Information-Based Approximation Framework for
Multi-Goal Path Finding [0.0]
2近似保証を提供するマルチゴールパス探索(MGPF)問題のための新しいフレームワークを開発する。
MGPFは、特定の目標セット内の各ノードが少なくとも1回はパスに沿って訪問されるように、原点から目的地までの最小コストのパスを見つけることを目指しています。
拡張ノード数と実行時間の観点から,従来の代替よりもフレームワークが優れていることを示す数値的結果を提示する。
論文 参考訳(メタデータ) (2021-03-15T06:27:37Z) - A Survey on Deep Semi-supervised Learning [51.26862262550445]
まず,既存の手法を分類した深層半指導学習の分類法を提案する。
次に、損失の種類、貢献度、アーキテクチャの違いの観点から、これらのメソッドを詳細に比較します。
論文 参考訳(メタデータ) (2021-02-28T16:22:58Z) - Point-Level Temporal Action Localization: Bridging Fully-supervised
Proposals to Weakly-supervised Losses [84.2964408497058]
point-level temporal action localization (ptal) は、各アクションインスタンスに対して1つのタイムスタンプアノテーションで、未トリミングビデオ内のアクションをローカライズすることを目的としている。
既存の手法ではフレームレベルの予測パラダイムを採用し、スパース単一フレームラベルから学習する。
本稿では,ポイントレベルアノテーションの提案に基づく予測パラダイムを検討する。
論文 参考訳(メタデータ) (2020-12-15T12:11:48Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Panoster: End-to-end Panoptic Segmentation of LiDAR Point Clouds [81.12016263972298]
我々は,LiDAR点雲のための提案不要なパノプティックセグメンテーション手法であるパノスターを提案する。
従来のアプローチとは異なり、Panosterでは、インスタンスを識別するための学習ベースのクラスタリングソリューションを組み込んだ、シンプルなフレームワークを提案している。
推論時に、これはクラスに依存しないセグメンテーションとして機能し、パノスターは高速で、精度の点で先行メソッドよりも優れている。
論文 参考訳(メタデータ) (2020-10-28T18:10:20Z) - A maximum-entropy approach to off-policy evaluation in average-reward
MDPs [54.967872716145656]
この研究は、無限水平非カウントマルコフ決定過程(MDPs)における関数近似を伴うオフ・ポリティ・アセスメント(OPE)に焦点を当てる。
提案手法は,第1の有限サンプル OPE 誤差境界であり,既存の結果がエピソードおよびディスカウントケースを超えて拡張される。
この結果から,教師あり学習における最大エントロピー的アプローチを並列化して,十分な統計値を持つ指数関数型家族分布が得られた。
論文 参考訳(メタデータ) (2020-06-17T18:13:37Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
暗黙的な逐次計画の仮定に代わるものを検討する。
本稿では,最適計画の近似を行うため,Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS)を提案する。
計画順序に対するこのアルゴリズム的柔軟性は,グリッドワールドにおけるナビゲーションタスクの改善に繋がることを示す。
論文 参考訳(メタデータ) (2020-04-23T18:08:58Z) - Multi-task Reinforcement Learning with a Planning Quasi-Metric [0.49416305961918056]
我々は,任意の状態から他の状態へ進むために必要なステップ数を推定する計画準測度(PQM)を組み合わせた新しい強化学習手法を提案する。
最近発表された標準的なビットフリップ問題やMuJoCoロボットアームシミュレータにおいて,マルチフォールドトレーニングの高速化を実現している。
論文 参考訳(メタデータ) (2020-02-08T22:12:59Z) - From Planes to Corners: Multi-Purpose Primitive Detection in Unorganized
3D Point Clouds [59.98665358527686]
直交平面の分割自由結合推定法を提案する。
このような統合されたシーン探索は、セマンティックプレーンの検出や局所的およびグローバルなスキャンアライメントといった、多目的のアプリケーションを可能にする。
本実験は,壁面検出から6次元トラッキングに至るまで,様々なシナリオにおいて,我々のアプローチの有効性を実証するものである。
論文 参考訳(メタデータ) (2020-01-21T06:51:47Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。