論文の概要: MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders
- arxiv url: http://arxiv.org/abs/2407.02228v2
- Date: Sun, 14 Jul 2024 07:50:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 23:57:10.037506
- Title: MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders
- Title(参考訳): MTMamba: マンバベースのデコーダによるマルチタスクDense Scene理解の強化
- Authors: Baijiong Lin, Weisen Jiang, Pengguang Chen, Yu Zhang, Shu Liu, Ying-Cong Chen,
- Abstract要約: マルチタスクシーン理解のための新しいマンバベースアーキテクチャであるMTMambaを提案する。
NYUDv2とPASCAL-Contextデータセットの実験では、TransformerベースのメソッドとCNNベースのメソッドよりも、MTMambaの方が優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 27.487314321249627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task dense scene understanding, which learns a model for multiple dense prediction tasks, has a wide range of application scenarios. Modeling long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba, a novel Mamba-based architecture for multi-task scene understanding. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging Mamba, while CTM explicitly models task interactions to facilitate information exchange across tasks. Experiments on NYUDv2 and PASCAL-Context datasets demonstrate the superior performance of MTMamba over Transformer-based and CNN-based methods. Notably, on the PASCAL-Context dataset, MTMamba achieves improvements of +2.08, +5.01, and +4.90 over the previous best methods in the tasks of semantic segmentation, human parsing, and object boundary detection, respectively. The code is available at https://github.com/EnVision-Research/MTMamba.
- Abstract(参考訳): 複数の密集予測タスクのモデルを学ぶマルチタスク密集シーン理解には、幅広いアプリケーションシナリオがある。
長距離依存性のモデリングとクロスタスク相互作用の強化はマルチタスク密度予測に不可欠である。
本稿では,マルチタスクシーン理解のための新しいマンバベースアーキテクチャであるMTMambaを提案する。
コアブロックには、セルフタスクのMamba(STM)ブロックとクロスタスクのMamba(CTM)ブロックの2種類がある。
STMはMambaを活用することで長距離依存を処理し、CTMはタスク間の情報交換を容易にするためにタスクインタラクションを明示的にモデル化する。
NYUDv2とPASCAL-Contextデータセットの実験では、TransformerベースのメソッドとCNNベースのメソッドよりも、MTMambaの方が優れたパフォーマンスを示している。
特に、PASCAL-Contextデータセットでは、MTMambaは、セマンティックセグメンテーション、ヒューマンパーシング、オブジェクト境界検出のタスクにおいて、以前のベストメソッドよりも+2.08、+5.01、+4.90の改善を実現している。
コードはhttps://github.com/EnVision-Research/MTMamba.comで入手できる。
関連論文リスト
- MambaVision: A Hybrid Mamba-Transformer Vision Backbone [54.965143338206644]
本稿では,視覚応用に適した新しいハイブリッド型Mamba-TransformerバックボーンであるMambaVisionを提案する。
私たちのコアコントリビューションには、視覚的特徴の効率的なモデリング能力を高めるために、Mambaの定式化を再設計することが含まれています。
視覚変換器(ViT)とマンバの統合可能性に関する包括的アブレーション研究を行う。
論文 参考訳(メタデータ) (2024-07-10T23:02:45Z) - CDMamba: Remote Sensing Image Change Detection with Mamba [30.387208446303944]
我々はCDMambaと呼ばれるモデルを提案し、CDタスクを扱うためのグローバル機能とローカル機能とを効果的に組み合わせている。
具体的には,Mambaのグローバルな特徴抽出と畳み込みによる局所的詳細化を実現するために,Scaled Residual ConvMambaブロックを提案する。
論文 参考訳(メタデータ) (2024-06-06T16:04:30Z) - MambaOut: Do We Really Need Mamba for Vision? [70.60495392198686]
状態空間モデル(SSM)のRNNライクなトークンミキサーを備えたアーキテクチャであるMambaが最近導入され、注意機構の2次複雑さに対処した。
本論文は,マンバが長周期および自己回帰特性を有するタスクに理想的に適していることを概念的に結論づける。
我々は,コアトークンミキサーであるSSMを除去しながら,Mambaブロックを積み重ねることで,MambaOutという名前の一連のモデルを構築する。
論文 参考訳(メタデータ) (2024-05-13T17:59:56Z) - Visual Mamba: A Survey and New Outlooks [33.90213491829634]
最近の選択的構造化状態空間モデルであるMambaは、ロングシーケンスモデリングにおいて優れている。
2024年1月以降、マンバは多様なコンピュータビジョンタスクに積極的に適用されてきた。
本稿では,200以上の論文を分析し,マンバの視覚的アプローチを概観する。
論文 参考訳(メタデータ) (2024-04-29T16:51:30Z) - RankMamba: Benchmarking Mamba's Document Ranking Performance in the Era of Transformers [2.8554857235549753]
トランスフォーマーアーキテクチャのコアメカニズム -- 注意には、トレーニングにおけるO(n2)$時間複雑さと推論におけるO(n)$時間複雑さが必要です。
状態空間モデルに基づく有名なモデル構造であるMambaは、シーケンスモデリングタスクにおいてトランスフォーマー等価のパフォーマンスを達成した。
同じトレーニングレシピを持つトランスフォーマーベースモデルと比較して,Mambaモデルは競争性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-27T06:07:05Z) - ReMamber: Referring Image Segmentation with Mamba Twister [51.291487576255435]
ReMamberは、マルチモーダルなMamba TwisterブロックとMambaのパワーを統合する新しいRISアーキテクチャである。
Mamba Twisterは画像とテキストのインタラクションを明示的にモデル化し、独自のチャネルと空間的ツイスト機構を通じてテキストと視覚的特徴を融合する。
論文 参考訳(メタデータ) (2024-03-26T16:27:37Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
ネスト構造であるMamba-in-Mamba(MiM-ISTD)を開発した。
MiM-ISTDはSOTA法より8倍高速で、2048×2048$のイメージでテストすると、GPUメモリ使用率を62.2$%削減する。
論文 参考訳(メタデータ) (2024-03-04T15:57:29Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z) - SegMamba: Long-range Sequential Modeling Mamba For 3D Medical Image
Segmentation [17.676472608152704]
我々は,新しい3次元医用画像textbfSegmentation textbfMambaモデルであるSegMambaを紹介した。
SegMambaは、状態空間モデルの観点から、全ボリューム特徴モデリングに優れています。
BraTS2023データセットの実験では、SegMambaの有効性と効率が示されている。
論文 参考訳(メタデータ) (2024-01-24T16:17:23Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
特定のスケールで高い親和性を持つタスクは、他のスケールでこの動作を維持することが保証されていないことを示す。
本稿では,この発見に基づく新しいアーキテクチャ MTI-Net を提案する。
論文 参考訳(メタデータ) (2020-01-19T21:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。