論文の概要: Wildfire Autonomous Response and Prediction Using Cellular Automata (WARP-CA)
- arxiv url: http://arxiv.org/abs/2407.02613v1
- Date: Tue, 2 Jul 2024 19:01:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:24:13.179402
- Title: Wildfire Autonomous Response and Prediction Using Cellular Automata (WARP-CA)
- Title(参考訳): セルオートマタ(WARP-CA)を用いた火災自動応答と予測
- Authors: Abdelrahman Ramadan,
- Abstract要約: WARP-CAモデルはパーリンノイズを用いた地形生成とセルラーオートマタ(CA)のダイナミズムを統合し,山火事の拡散をシミュレートする。
我々は,UAVやUGVなどの自律型エージェントを模擬して,山火事を管理するマルチエージェント強化学習の可能性を探る。
- 参考スコア(独自算出の注目度): 0.7252027234425334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Wildfires pose a severe challenge to ecosystems and human settlements, exacerbated by climate change and environmental factors. Traditional wildfire modeling, while useful, often fails to adapt to the rapid dynamics of such events. This report introduces the (Wildfire Autonomous Response and Prediction Using Cellular Automata) WARP-CA model, a novel approach that integrates terrain generation using Perlin noise with the dynamism of Cellular Automata (CA) to simulate wildfire spread. We explore the potential of Multi-Agent Reinforcement Learning (MARL) to manage wildfires by simulating autonomous agents, such as UAVs and UGVs, within a collaborative framework. Our methodology combines world simulation techniques and investigates emergent behaviors in MARL, focusing on efficient wildfire suppression and considering critical environmental factors like wind patterns and terrain features.
- Abstract(参考訳): 森林火災は気候変動や環境要因によって悪化する生態系や人的居住地にとって深刻な課題となる。
伝統的な山火事モデリングは有用であるが、そのような事象の急激なダイナミクスに適応できないことが多い。
本稿では,パーリンノイズを用いた地形生成とセルオートマタ(CA)のダイナミズムを統合し,山火事の拡散をシミュレートする手法であるWARP-CAモデルを提案する。
我々は,UAVやUGVなどの自律型エージェントを協調的な枠組みでシミュレーションすることにより,山火事を管理するマルチエージェント強化学習(MARL)の可能性を探る。
本手法は,世界シミュレーション技術とMARLの創発的挙動を併用し,効率的な山火事抑制と,風のパターンや地形特性といった重要な環境要因を考察する。
関連論文リスト
- A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
本研究は、アメリカ合衆国における山火事の検出および対処のための積極的な方法を検討する。
本研究の目的は,高度技術を用いた山火事の予防的検出と防止である。
AI対応のリモートセンシングや5Gベースのアクティブモニタリングなど、さまざまな方法により、アクティブな山火事の検出と管理が強化される。
論文 参考訳(メタデータ) (2024-02-27T04:09:30Z) - A comprehensive survey of research towards AI-enabled unmanned aerial
systems in pre-, active-, and post-wildfire management [6.043705525669726]
森林火災は世界でも最も破壊的な自然災害の1つであり、人命と森林の野生生物に壊滅的な被害をもたらしている。
近年、無人航空機(UAV)とディープラーニングモデルの統合によって推進される山火事における人工知能(AI)の使用は、より効果的な山火事管理を実装し、開発するための前例のない勢いを生み出している。
論文 参考訳(メタデータ) (2024-01-04T05:09:35Z) - Reinforcement Learning for Wildfire Mitigation in Simulated Disaster
Environments [39.014859667729375]
森林火災は生命、財産、生態学、文化遺産、重要なインフラに脅威をもたらす。
SimFireは、現実的な山火事シナリオを生成するために設計された、多用途の野火投射シミュレータである。
SimHarnessはモジュール型のエージェントベースの機械学習ラッパーで、自動的に土地管理戦略を生成することができる。
論文 参考訳(メタデータ) (2023-11-27T15:37:05Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD(Iterative Interaction of Prediction and Planning Autonomous Driving)は、予測と計画のより良い統合を目的とした、タイムステップワイドなインタラクションである。
我々は,階層的動的キーオブジェクトに着目したego-to-agent,ego-to-map,ego-to-BEVインタラクション機構を設計し,インタラクションをモデル化する。
論文 参考訳(メタデータ) (2023-11-14T11:53:24Z) - A generative model for surrogates of spatial-temporal wildfire
nowcasting [13.551652250858144]
3次元ベクトル量子変分オートコーダを用いて生成モデルを提案する。
このモデルは、最近カリフォルニア州で起きた大規模な山火事(チムニー火災)のエコリージョンでテストされている。
数値的な結果から, 連続かつ構造的な火災シナリオの生成に成功した。
論文 参考訳(メタデータ) (2023-08-05T06:54:18Z) - FORFIS: A forest fire firefighting simulation tool for education and
research [90.40304110009733]
本稿では,Python で実装された森林火災消火シミュレーションツール FORFIS について述べる。
私たちのツールは underv3 ライセンスを公開しており、GUI と出力機能が追加されています。
論文 参考訳(メタデータ) (2023-05-29T09:14:38Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Mitigating Greenhouse Gas Emissions Through Generative Adversarial
Networks Based Wildfire Prediction [11.484140660635239]
我々は,山火事リスク予測のための深層学習に基づくデータ拡張手法を開発した。
提案手法を採用することで,地球規模の温室効果ガス排出量削減のため,山火事対策の予防戦略を採ることができる。
論文 参考訳(メタデータ) (2021-08-20T00:36:30Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
ワイルドファイアはアメリカ合衆国西海岸で頻繁に起こる最大の災害の1つである。
カリフォルニアの山火事リスクが高い地域を解析・評価するための静的・動的予測モデルを提案します。
論文 参考訳(メタデータ) (2021-03-14T17:56:17Z) - Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics [0.0]
森林火災伝播のダイナミクスをモデル化するために,畳み込み長短期記憶リカレントニューラルネットワークの有効性を評価する。
その結果,convlstmsは局所的な火災伝達イベントを捕捉できるだけでなく,火の拡散率など全体の火災動態を把握できることがわかった。
論文 参考訳(メタデータ) (2020-12-11T23:31:43Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
本研究では,山火事の動態について,動的コミュニティ構造が明らかにする情報について検討する。
アマゾン盆地の火災イベントのMODISデータセットを用いた実験を行った。
以上の結果から,年間を通じて観測される山火事のパターンを明らかにすることが可能であることが示唆された。
論文 参考訳(メタデータ) (2020-11-02T17:31:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。