論文の概要: A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
- arxiv url: http://arxiv.org/abs/2407.02646v1
- Date: Tue, 2 Jul 2024 20:28:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 18:14:18.392475
- Title: A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
- Title(参考訳): 変圧器に基づく言語モデルにおける機械論的解釈可能性の実践的検討
- Authors: Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, Ziyu Yao,
- Abstract要約: 機械的解釈可能性(MI)は、その内部計算をリバースエンジニアリングすることでニューラルネットワークモデルを理解しようとする、新たな解釈可能性のサブフィールドである。
本稿は,MIにおける基礎研究対象,その調査に用いられている技術,MIの結果を評価するためのアプローチ,およびMIを用いてLMを理解することに起因する重要な知見と応用について概説する。
- 参考スコア(独自算出の注目度): 19.45486539311504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mechanistic interpretability (MI) is an emerging sub-field of interpretability that seeks to understand a neural network model by reverse-engineering its internal computations. Recently, MI has garnered significant attention for interpreting transformer-based language models (LMs), resulting in many novel insights yet introducing new challenges. However, there has not been work that comprehensively reviews these insights and challenges, particularly as a guide for newcomers to this field. To fill this gap, we present a comprehensive survey outlining fundamental objects of study in MI, techniques that have been used for its investigation, approaches for evaluating MI results, and significant findings and applications stemming from the use of MI to understand LMs. In particular, we present a roadmap for beginners to navigate the field and leverage MI for their benefit. Finally, we also identify current gaps in the field and discuss potential future directions.
- Abstract(参考訳): 機械的解釈可能性(MI)は、その内部計算をリバースエンジニアリングすることでニューラルネットワークモデルを理解しようとする、新たな解釈可能性のサブフィールドである。
近年、MIはトランスフォーマーベース言語モデル(LM)の解釈において大きな注目を集めており、多くの新しい知見がもたらされ、新たな課題がもたらされた。
しかし、これらの洞察と課題を包括的にレビューする作業は、特に新参者のこの分野へのガイドとして行われていない。
このギャップを埋めるために,本研究では,MIの基本的な研究対象,その調査に使用されてきた技術,MIの結果を評価するためのアプローチ,およびMIを用いてLMを理解することに起因する重要な発見と応用について概説する。
特に、初心者がフィールドをナビゲートし、MIを活用するためのロードマップを提示する。
最後に、この分野における現在のギャップを特定し、将来的な方向性について議論する。
関連論文リスト
- Machine Learning for Missing Value Imputation [0.0]
本論文の主な目的は、ミス・バリュー・インプットにおける最先端の機械学習アプリケーションの解析と同様に、包括的で厳密なレビューを行うことである。
2014年から2023年にかけて発行された100以上の記事が、その方法や発見を考慮して批判的にレビューされている。
最新の文献は,MVI法の動向とその評価を精査するために検討されている。
論文 参考訳(メタデータ) (2024-10-10T18:56:49Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
ブラックボックス機械学習アプローチは、リモートセンシングにおける知識抽出における主要なモデリングパラダイムとなっている。
我々は、この分野における重要なトレンドを特定するための体系的なレビューを行い、新しい説明可能なAIアプローチに光を当てた。
また,課題と将来的な研究方向性について,より詳細な展望を述べる。
論文 参考訳(メタデータ) (2024-02-21T13:19:58Z) - Challenges in Mechanistically Interpreting Model Representations [0.0]
機械的解釈可能性(MI)は、ニューラルネットワークが学習する正確なアルゴリズムをリバースエンジニアリングすることで、AIモデルを理解することを目的としている。
これまでのMIにおけるほとんどの研究は、自明でトークンに整合した振る舞いと能力を研究してきた。
我々は特徴と行動の表現を形式化し、その重要性と評価を強調し、Mistral-7B-Instruct-v0.1における不完全表現の探索的研究を行う。
論文 参考訳(メタデータ) (2024-02-06T10:06:13Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
算数問題に対するトランスフォーマーに基づくLMの機械的解釈を提案する。
これにより、算術に関連する情報がLMによってどのように処理されるかについての洞察が得られる。
論文 参考訳(メタデータ) (2023-05-24T11:43:47Z) - A Paradigm Shift: The Future of Machine Translation Lies with Large Language Models [55.42263732351375]
深層ニューラルネットワークの発展により、機械翻訳は長年にわたって大きく進歩してきた。
GPT-4やChatGPTのような大規模言語モデル(LLM)の出現は、MTドメインに新しいフェーズを導入している。
我々は、Long-Document Translation、Stylized Translation、Interactive TranslationなどのシナリオにおけるLLMの利点を強調し、新しいMT方向を強調した。
論文 参考訳(メタデータ) (2023-05-02T03:27:27Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
本稿では,マルチヘッド自己注意と最終MRCシステム性能の関係を検討するために,一連の解析実験を実施することに焦点を当てる。
問合せ及び問合せ理解の注意が問合せプロセスにおいて最も重要なものであることが判明した。
包括的可視化とケーススタディを通じて、注意マップに関するいくつかの一般的な知見も観察し、これらのモデルがどのように問題を解くかを理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-08-26T04:23:57Z) - Mutual Information Gradient Estimation for Representation Learning [56.08429809658762]
相互情報(MI)は表現学習において重要な役割を担っている。
近年の進歩は、有用な表現を見つけるためのトラクタブルでスケーラブルなMI推定器を確立している。
暗黙分布のスコア推定に基づく表現学習のための相互情報勾配推定器(MIGE)を提案する。
論文 参考訳(メタデータ) (2020-05-03T16:05:58Z) - A Comprehensive Survey of Multilingual Neural Machine Translation [22.96845346423759]
我々は多言語ニューラルマシン翻訳(MNMT)について調査する。
MNMTは、機械翻訳の研究のために、エンドツーエンドのモデリングと分散表現が新しい道を開くため、統計機械翻訳よりも有望である。
まず、その中心となるユースケースに基づいて様々なアプローチを分類し、さらにリソースシナリオ、基礎となるモデリング原則、コアイシュー、課題に基づいてそれらを分類します。
論文 参考訳(メタデータ) (2020-01-04T19:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。