A Framework for Quantum Finite-State Languages with Density Mapping
- URL: http://arxiv.org/abs/2407.02776v1
- Date: Wed, 3 Jul 2024 03:06:37 GMT
- Title: A Framework for Quantum Finite-State Languages with Density Mapping
- Authors: SeungYeop Baik, Sicheol Sung, Yo-Sub Han,
- Abstract summary: A quantum finite-state automaton (QFA) is a theoretical model designed to simulate the evolution of a quantum system with finite memory.
We present a framework that provides a simple and intuitive way to build QFAs and maximize the simulation accuracy.
- Score: 3.1133049660590615
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A quantum finite-state automaton (QFA) is a theoretical model designed to simulate the evolution of a quantum system with finite memory in response to sequential input strings. We define the language of a QFA as the set of strings that lead the QFA to an accepting state when processed from its initial state. QFAs exemplify how quantum computing can achieve greater efficiency compared to classical computing. While being one of the simplest quantum models, QFAs are still notably challenging to construct from scratch due to the preliminary knowledge of quantum mechanics required for superimposing unitary constraints on the automata. Furthermore, even when QFAs are correctly assembled, the limitations of a current quantum computer may cause fluctuations in the simulation results depending on how an assembled QFA is translated into a quantum circuit. We present a framework that provides a simple and intuitive way to build QFAs and maximize the simulation accuracy. Our framework relies on two methods: First, it offers a predefined construction for foundational types of QFAs that recognize special languages MOD and EQU. They play a role of basic building blocks for more complex QFAs. In other words, one can obtain more complex QFAs from these foundational automata using standard language operations. Second, we improve the simulation accuracy by converting these QFAs into quantum circuits such that the resulting circuits perform well on noisy quantum computers. Our framework is available at https://github.com/sybaik1/qfa-toolkit.
Related papers
- Quantum Algorithms for Compositional Text Processing [1.3654846342364308]
We focus on the recently proposed DisCoCirc framework for natural language, and propose a quantum adaptation, QDisCoCirc.
This is motivated by a compositional approach to rendering AI interpretable.
For the model-native primitive operation of text similarity, we derive quantum algorithms for fault-tolerant quantum computers.
arXiv Detail & Related papers (2024-08-12T11:21:40Z) - ADAPT-QSCI: Adaptive Construction of Input State for Quantum-Selected
Configuration Interaction [0.0]
We present a quantum-classical hybrid algorithm for calculating the ground state and its energy of the quantum many-body Hamiltonian.
We numerically illustrate that our method, dubbed textitADAPT-QSCI, can yield accurate ground-state energies for small molecules.
arXiv Detail & Related papers (2023-11-02T09:15:50Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies.
QFL can be deployed over both classical and quantum communication networks.
arXiv Detail & Related papers (2023-10-23T02:56:00Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Expressive Quantum Perceptrons for Quantum Neuromorphic Computing [1.7636846875530183]
Quantum neuromorphic computing (QNC) is a sub-field of quantum machine learning (QML)
We propose a building block for QNC architectures, what we call quantum perceptrons (QPs)
QPs compute based on the analog dynamics of interacting qubits with tunable coupling constants.
We show that QPs are, with restricted resources, a quantum equivalent to the classical perceptron, a simple mathematical model for a neuron.
arXiv Detail & Related papers (2022-11-14T02:50:42Z) - Learning Quantum Finite Automata with Queries [2.28438857884398]
Quantum finite automata (QFA) are simple models of quantum computers with finite memory.
We propose a learning algorithm for measure-once one-way QFA (MO-1QFA) with query complexity of time.
We also propose a learning algorithm for measure-many one-way QFA (MM-1QFA) with query complexity of time.
arXiv Detail & Related papers (2021-11-28T03:26:47Z) - Cost-efficient QFA Algorithm for Quantum Computers [0.0]
We present a modified Moore-Crutchfield quantum finite automaton (MCQFA) algorithm for the language $mathttMOD_p$.
We obtain shorter quantum programs using fewer basis gates compared to the implementation of the original algorithm given in the literature.
arXiv Detail & Related papers (2021-07-05T20:41:18Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.