論文の概要: PII-Compass: Guiding LLM training data extraction prompts towards the target PII via grounding
- arxiv url: http://arxiv.org/abs/2407.02943v1
- Date: Wed, 3 Jul 2024 09:20:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:55:24.568810
- Title: PII-Compass: Guiding LLM training data extraction prompts towards the target PII via grounding
- Title(参考訳): PII-Compass:LLMトレーニングデータ抽出プロンプトのグラウンド化による目標PIIへの誘導
- Authors: Krishna Kanth Nakka, Ahmed Frikha, Ricardo Mendes, Xue Jiang, Xuebing Zhou,
- Abstract要約: ドメイン内データを用いて手作業で構築した抽出プロンプトを接地することで,個人識別情報(PII)の抽出性を向上させることができることを示す。
提案手法は,1,128,128,2308問合せでそれぞれ0.92%,3.9%,6.86%のPII電話番号抽出率,すなわち15人に15人の電話番号を抽出可能である。
- 参考スコア(独自算出の注目度): 8.98944128441731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The latest and most impactful advances in large models stem from their increased size. Unfortunately, this translates into an improved memorization capacity, raising data privacy concerns. Specifically, it has been shown that models can output personal identifiable information (PII) contained in their training data. However, reported PIII extraction performance varies widely, and there is no consensus on the optimal methodology to evaluate this risk, resulting in underestimating realistic adversaries. In this work, we empirically demonstrate that it is possible to improve the extractability of PII by over ten-fold by grounding the prefix of the manually constructed extraction prompt with in-domain data. Our approach, PII-Compass, achieves phone number extraction rates of 0.92%, 3.9%, and 6.86% with 1, 128, and 2308 queries, respectively, i.e., the phone number of 1 person in 15 is extractable.
- Abstract(参考訳): 大型モデルの最新かつ最も影響力のある進歩は、そのサイズの増加によるものである。
残念ながら、これは記憶能力が改善され、データのプライバシに関する懸念が高まる。
具体的には、モデルがトレーニングデータに含まれる個人識別情報(PII)を出力できることが示されている。
しかし、報告されたPIII抽出性能は様々であり、このリスクを評価するための最適手法について合意が得られず、現実的な敵を過小評価する結果となった。
本研究では,ドメイン内データを用いて手作業で構築した抽出プロンプトの接頭辞を接頭することで,PIIの抽出性を10倍に向上できることを実証的に示す。
PII-Compassは1,128,2308問合せで0.92%,3.9%,6.86%の電話番号を抽出する。
関連論文リスト
- Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
本稿では,Step-DPOと呼ばれるシンプルで効果的でデータ効率のよい手法を提案する。
Step-DPOは、個々の推論ステップを、論理的に回答を評価するのではなく、優先最適化の単位として扱う。
以上の結果から,70B パラメータ以上のモデルでは,10K の選好データペアと500 Step-DPO トレーニングステップ以下では,MATH の精度が約3%向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-26T17:43:06Z) - Improving Entity Recognition Using Ensembles of Deep Learning and Fine-tuned Large Language Models: A Case Study on Adverse Event Extraction from Multiple Sources [13.750202656564907]
副作用イベント(AE)抽出は、免疫の安全プロファイルを監視し解析するために重要である。
本研究では,AE抽出における大規模言語モデル(LLM)と従来のディープラーニングモデルの有効性を評価することを目的とする。
論文 参考訳(メタデータ) (2024-06-26T03:56:21Z) - MAmmoTH2: Scaling Instructions from the Web [39.786198452175505]
そこで本研究では,学習前のWebコーパスから,1000万の自然界に存在するインストラクションデータを効率的に抽出するパラダイムを提案する。
我々はMAmmoTH2モデルを構築し、推論ベンチマークの性能を大幅に向上させた。
さらに、パブリックインストラクションチューニングデータセット上でMAmmoTH2をトレーニングすると、MAmmoTH2-Plusが得られ、最先端のパフォーマンスが達成される。
論文 参考訳(メタデータ) (2024-05-06T15:11:38Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
本稿では,攻撃者によるLSMエージェントを用いたブラックボックスプロンプト最適化手法を提案する。
ベースラインプレフィックス・サフィックス測定と比較すると,命令ベースのプロンプトは,トレーニングデータと23.7%のオーバラップで出力を生成する。
以上の結果から,命令調整モデルでは,ベースモデルと同等に事前学習データを公開することが可能であり,他のLSMが提案する命令を用いることで,新たな自動攻撃の道を開くことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T19:32:01Z) - ProPILE: Probing Privacy Leakage in Large Language Models [38.92840523665835]
大規模言語モデル(LLM)は、しばしば大量のWebコンパイルデータに基づいて訓練される。
本稿では,PII リークの可能性を意識して,データ被写体や PII の所有者を支援する新しい探索ツールである ProPILE について述べる。
論文 参考訳(メタデータ) (2023-07-04T18:53:47Z) - Controlling the Extraction of Memorized Data from Large Language Models
via Prompt-Tuning [14.228909822681373]
大規模言語モデル(LLM)は、トレーニングデータのかなりの部分を記憶することが知られている。
本稿では, LLMにおける暗記コンテンツの抽出速度を制御するために, プロンプトチューニングを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-19T15:45:29Z) - Boosting Visual-Language Models by Exploiting Hard Samples [126.35125029639168]
HELIPは、既存のCLIPモデルの性能を高めるための費用対効果戦略である。
我々の方法では、既存のモデルのトレーニングパイプラインと懸命に統合できます。
包括的なベンチマークでは、HELIPはパフォーマンス向上のために既存のモデルを継続的に強化する。
論文 参考訳(メタデータ) (2023-05-09T07:00:17Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
本稿では,モデルが目標性能に達するために必要なサンプル数を推定する手法を提案する。
モデル性能を推定するデファクト原理であるパワー法則が,小さなデータセットを使用する場合の誤差が大きいことが判明した。
本稿では,2つのデータを異なる方法で処理するPPL法について紹介する。
論文 参考訳(メタデータ) (2023-03-02T21:48:22Z) - Selective In-Context Data Augmentation for Intent Detection using
Pointwise V-Information [100.03188187735624]
PLMとPVI(pointwise V-information)に基づく新しい手法を導入し,モデル学習におけるデータポイントの有用性を計測する。
提案手法はまず,学習データの小さなシード上でPLMを微調整し,与えられた意図に対応する発話を新たに生成する。
そこで本手法は,大規模言語モデルの表現力を活用し,多様な学習データを生成する。
論文 参考訳(メタデータ) (2023-02-10T07:37:49Z) - Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary
Data [100.33096338195723]
補助データを用いたFew-shot Learning(FLAD)に焦点を当てる。
FLADは、一般化を改善するために、数ショットの学習中に補助データへのアクセスを前提としている。
提案するアルゴリズムは EXP3-FLAD と UCB1-FLAD の2つである。
論文 参考訳(メタデータ) (2023-02-01T18:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。