論文の概要: IncogniText: Privacy-enhancing Conditional Text Anonymization via LLM-based Private Attribute Randomization
- arxiv url: http://arxiv.org/abs/2407.02956v2
- Date: Sun, 02 Feb 2025 16:51:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:08:15.858559
- Title: IncogniText: Privacy-enhancing Conditional Text Anonymization via LLM-based Private Attribute Randomization
- Title(参考訳): IncogniText: LLMベースのプライベート属性ランダム化によるプライバシ強化条件テキスト匿名化
- Authors: Ahmed Frikha, Nassim Walha, Krishna Kanth Nakka, Ricardo Mendes, Xue Jiang, Xuebing Zhou,
- Abstract要約: IncogniTextは,テキストを匿名化して潜在的敵を誤認し,誤った属性値を予測する手法である。
実証評価の結果,8種類の属性に対して,プライベート属性リークが90%以上減少していることがわかった。
- 参考スコア(独自算出の注目度): 8.483679748399037
- License:
- Abstract: In this work, we address the problem of text anonymization where the goal is to prevent adversaries from correctly inferring private attributes of the author, while keeping the text utility, i.e., meaning and semantics. We propose IncogniText, a technique that anonymizes the text to mislead a potential adversary into predicting a wrong private attribute value. Our empirical evaluation shows a reduction of private attribute leakage by more than 90% across 8 different private attributes. Finally, we demonstrate the maturity of IncogniText for real-world applications by distilling its anonymization capability into a set of LoRA parameters associated with an on-device model. Our results show the possibility of reducing privacy leakage by more than half with limited impact on utility.
- Abstract(参考訳): 本研究では,著者の個人属性を正しく推測するのを防ぐことを目的としたテキスト匿名化の問題に対処する。
IncogniTextは,テキストを匿名化して潜在的敵を誤認し,誤った属性値を予測する手法である。
実証評価の結果,8種類の属性に対して,プライベート属性リークが90%以上減少していることがわかった。
最後に、実世界のアプリケーションにおけるIncogniTextの成熟度を、その匿名化能力をオンデバイスモデルに関連するLoRAパラメータのセットに蒸留することによって実証する。
以上の結果から,プライバシリークが半分以上減少し,ユーティリティへの影響が限定された可能性が示唆された。
関連論文リスト
- Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - NAP^2: A Benchmark for Naturalness and Privacy-Preserving Text Rewriting by Learning from Human [55.20137833039499]
我々は,人間によって使用される2つの共通戦略を用いて,機密テキストの衛生化を提案する。
我々は,クラウドソーシングと大規模言語モデルの利用を通じて,NAP2という最初のコーパスをキュレートする。
論文 参考訳(メタデータ) (2024-06-06T05:07:44Z) - Keep It Private: Unsupervised Privatization of Online Text [13.381890596224867]
音声,感覚,プライバシのバランスを保った書き直しを生成するために,強化学習を通じて大規模言語モデルを微調整する自動テキスト民営化フレームワークを導入する。
短命長テキストからなる68kの著者による大規模な英語Reddit投稿に対して,これを広範囲に評価した。
論文 参考訳(メタデータ) (2024-05-16T17:12:18Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Adversary for Social Good: Leveraging Adversarial Attacks to Protect
Personal Attribute Privacy [14.395031313422214]
我々は、機械学習の固有の脆弱性を敵攻撃に利用し、Adv4SGと呼ばれるソーシャルグッドのための新しいテキストスペース・アタックを設計する。
提案手法は,異なる属性設定に対して計算コストの少ない推論精度を効果的に劣化させ,推論攻撃の影響を軽減し,ユーザ属性のプライバシ保護において高い性能を実現する。
論文 参考訳(メタデータ) (2023-06-04T21:40:23Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Protecting Anonymous Speech: A Generative Adversarial Network
Methodology for Removing Stylistic Indicators in Text [2.9005223064604078]
我々は,生成的敵ネットワークの構築によるオーサリングの匿名化への新たなアプローチを開発する。
完全自動方式は,コンテンツ保存や流布の点で他の手法と同等の結果が得られる。
我々のアプローチは、オープンセットの文脈に順応し、これまで遭遇したことのない著者の文章を匿名化することができる。
論文 参考訳(メタデータ) (2021-10-18T17:45:56Z) - When differential privacy meets NLP: The devil is in the detail [3.5503507997334958]
テキストの書き直しのための微分プライベート自動エンコーダであるADePTの形式解析を行う。
以上の結果から,ADePTは差分プライベートではないことが判明した。
論文 参考訳(メタデータ) (2021-09-07T16:12:25Z) - No Intruder, no Validity: Evaluation Criteria for Privacy-Preserving
Text Anonymization [0.48733623015338234]
自動テキスト匿名化システムを開発する研究者や実践者は,その評価手法が,個人を再同定から保護するシステムの能力に本当に反映しているかどうかを慎重に評価すべきである。
本稿では,匿名化手法の技術的性能,匿名化による情報損失,不正文書の非匿名化能力を含む評価基準のセットを提案する。
論文 参考訳(メタデータ) (2021-03-16T18:18:29Z) - InfoScrub: Towards Attribute Privacy by Targeted Obfuscation [77.49428268918703]
視覚データに流出した個人情報を個人が制限できる技術について検討する。
我々はこの問題を新しい画像難読化フレームワークで解決する。
提案手法では,元の入力画像に忠実な難読化画像を生成するとともに,非難読化画像に対して6.2$times$(または0.85bits)の不確実性を増大させる。
論文 参考訳(メタデータ) (2020-05-20T19:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。