論文の概要: Investigating User Perspectives on Differentially Private Text Privatization
- arxiv url: http://arxiv.org/abs/2503.09338v1
- Date: Wed, 12 Mar 2025 12:33:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-13 15:35:33.460793
- Title: Investigating User Perspectives on Differentially Private Text Privatization
- Title(参考訳): 個人差分テキストプライバタイズにおけるユーザ視点の検討
- Authors: Stephen Meisenbacher, Alexandra Klymenko, Alexander Karpp, Florian Matthes,
- Abstract要約: この研究は、$textitscenario$, $textitdata sensitivity$, $textitmechanism type$, $textitreason for data collection$, $textitreason for user preferences for text privatizationについて調査する。
これらの要因がプライバシー決定に影響を及ぼす一方で、ユーザはプライベートな出力テキストの有用性と一貫性に非常に敏感である、ということを学びました。
- 参考スコア(独自算出の注目度): 81.59631769859004
- License:
- Abstract: Recent literature has seen a considerable uptick in $\textit{Differentially Private Natural Language Processing}$ (DP NLP). This includes DP text privatization, where potentially sensitive input texts are transformed under DP to achieve privatized output texts that ideally mask sensitive information $\textit{and}$ maintain original semantics. Despite continued work to address the open challenges in DP text privatization, there remains a scarcity of work addressing user perceptions of this technology, a crucial aspect which serves as the final barrier to practical adoption. In this work, we conduct a survey study with 721 laypersons around the globe, investigating how the factors of $\textit{scenario}$, $\textit{data sensitivity}$, $\textit{mechanism type}$, and $\textit{reason for data collection}$ impact user preferences for text privatization. We learn that while all these factors play a role in influencing privacy decisions, users are highly sensitive to the utility and coherence of the private output texts. Our findings highlight the socio-technical factors that must be considered in the study of DP NLP, opening the door to further user-based investigations going forward.
- Abstract(参考訳): 最近の文献では、$\textit{Differentially Private Natural Language Processing}$ (DP NLP)でかなりの上昇が見られる。
これにはDPテキストの民営化が含まれており、潜在的にセンシティブな入力テキストはDPの下で変換され、プリミティブ化された出力テキストが理想的にはセンシティブな情報を$\textit{and}$に隠蔽する。
DPテキストの民営化におけるオープンな課題に対処する努力は続いているが、この技術に対するユーザの認識に対処する作業は依然として不足している。
本研究では、世界中の721人のレイパーソンを対象に調査を行い、$\textit{scenario}$, $\textit{data sensitivity}$, $\textit{mechanism type}$, $\textit{reason for data collection}$が、テキストのプライベート化に対するユーザの好みにどのように影響するかを調査した。
これらの要因がプライバシー決定に影響を及ぼす一方で、ユーザはプライベートな出力テキストの有用性と一貫性に非常に敏感である、ということを学びました。
本研究は, DP NLP研究において考慮すべき社会技術的要因に注目し, 今後のユーザベース調査への扉を開くものである。
関連論文リスト
- On the Impact of Noise in Differentially Private Text Rewriting [3.0177210416625124]
そこで本稿では,DPテキストの書き直しにおけるノイズの影響を探索するために,新たな文埋込民営化手法を提案する。
実用性保護において非DP民営化技術が優れていることを実証的に示すとともに,実証的プライバシ保護においてDP手法を上回りつつも,許容可能な実証的プライバシユーティリティトレードオフを見出すことができることを示す。
論文 参考訳(メタデータ) (2025-01-31T10:45:24Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
プライバシを保存するコンピュータビジョンは、機械学習と人工知能において重要な問題である。
本稿では,ビデオデータセット中の感性のある被験者を文脈内の合成アバターに置き換える匿名化パイプラインを提案する。
また、匿名化されていないがプライバシーに敏感な背景情報を保護するため、MaskDPを提案する。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Thinking Outside of the Differential Privacy Box: A Case Study in Text Privatization with Language Model Prompting [3.3916160303055567]
我々は、差別化プライバシ(DP)統合が課す制約について議論するとともに、そのような制限がもたらす課題を明らかにします。
以上の結果から,NLPにおけるDPのユーザビリティと非DPアプローチに対するメリットについて,さらなる議論の必要性が示唆された。
論文 参考訳(メタデータ) (2024-10-01T14:46:15Z) - IncogniText: Privacy-enhancing Conditional Text Anonymization via LLM-based Private Attribute Randomization [8.483679748399037]
IncogniTextは,テキストを匿名化して潜在的敵を誤認し,誤った属性値を予測する手法である。
実証評価の結果,8種類の属性に対して,プライベート属性リークが90%以上減少していることがわかった。
論文 参考訳(メタデータ) (2024-07-03T09:49:03Z) - NAP^2: A Benchmark for Naturalness and Privacy-Preserving Text Rewriting by Learning from Human [55.20137833039499]
我々は,人間によって使用される2つの共通戦略を用いて,機密テキストの衛生化を提案する。
我々は,クラウドソーシングと大規模言語モデルの利用を通じて,NAP2という最初のコーパスをキュレートする。
論文 参考訳(メタデータ) (2024-06-06T05:07:44Z) - Just Rewrite It Again: A Post-Processing Method for Enhanced Semantic Similarity and Privacy Preservation of Differentially Private Rewritten Text [3.3916160303055567]
本稿では,書き直したテキストを元のテキストと整合させることを目標とした,簡単な後処理手法を提案する。
以上の結果から,このような手法は,従来の入力よりも意味論的に類似した出力を生成するだけでなく,経験的プライバシ評価において平均的なスコアがよいテキストを生成することが示唆された。
論文 参考訳(メタデータ) (2024-05-30T08:41:33Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
DPニューラルネットワークにおけるオブジェクトごとの規範と個人のプライバシ損失との関係について検討する。
プライバシ・ロス・インプット・サセプティビリティ(PLIS)と呼ばれる新しい指標を導入し、被験者のプライバシ・ロスを入力属性に適応させることを可能にした。
論文 参考訳(メタデータ) (2022-11-18T11:39:03Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。