論文の概要: Enhancements for Real-Time Monte-Carlo Tree Search in General Video Game Playing
- arxiv url: http://arxiv.org/abs/2407.03049v1
- Date: Wed, 3 Jul 2024 12:18:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 14:26:01.187212
- Title: Enhancements for Real-Time Monte-Carlo Tree Search in General Video Game Playing
- Title(参考訳): 汎用ビデオゲームにおけるリアルタイムモンテカルロ木探索の強化
- Authors: Dennis J. N. J. Soemers, Chiara F. Sironi, Torsten Schuster, Mark H. M. Winands,
- Abstract要約: 本稿では,汎用ゲームプレイング(GVGP)におけるモンテカルロ木探索(MCTS)の8つの拡張について論じる。
これらのいくつかは既存の文献から知られており、拡張またはGVGPの文脈で導入されている。
ほとんどの拡張は、個別に適用された場合の勝利率の統計的に有意な増加をもたらすことが示されている。
- 参考スコア(独自算出の注目度): 1.2882480196517305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: General Video Game Playing (GVGP) is a field of Artificial Intelligence where agents play a variety of real-time video games that are unknown in advance. This limits the use of domain-specific heuristics. Monte-Carlo Tree Search (MCTS) is a search technique for game playing that does not rely on domain-specific knowledge. This paper discusses eight enhancements for MCTS in GVGP; Progressive History, N-Gram Selection Technique, Tree Reuse, Breadth-First Tree Initialization, Loss Avoidance, Novelty-Based Pruning, Knowledge-Based Evaluations, and Deterministic Game Detection. Some of these are known from existing literature, and are either extended or introduced in the context of GVGP, and some are novel enhancements for MCTS. Most enhancements are shown to provide statistically significant increases in win percentages when applied individually. When combined, they increase the average win percentage over sixty different games from 31.0% to 48.4% in comparison to a vanilla MCTS implementation, approaching a level that is competitive with the best agents of the GVG-AI competition in 2015.
- Abstract(参考訳): General Video Game Playing (GVGP) は、エージェントが事前に不明な様々なリアルタイムビデオゲームを行う人工知能の分野である。
これはドメイン固有のヒューリスティックの使用を制限する。
Monte-Carlo Tree Search (MCTS)は、ドメイン固有の知識に依存しないゲームプレイのための検索手法である。
本稿では,GVGPにおけるMCTSの8つの拡張について述べる。プログレッシブヒストリー,N-グラム選択技術,ツリー再利用,ブレッドスファーストツリー初期化,ロス回避,ノベルティベースプルーニング,知識ベース評価,決定論的ゲーム検出。
これらのいくつかは既存の文献から知られており、GVGPの文脈で拡張または導入されている。
ほとんどの拡張は、個別に適用された場合の勝利率の統計的に有意な増加をもたらすことが示されている。
組み合わせると、2015年のGVG-AIコンペティションのベストエージェントと競合するレベルに近づいているバニラMCTS実装と比較して、60種類のゲームの平均勝利率を31.0%から48.4%に引き上げる。
関連論文リスト
- Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
マルチエージェントパスフィンディングに適したモンテカルロ木探索(MCTS)のオリジナル版を紹介する。
具体的には,エージェントの目標達成行動を支援するために,個別の経路を用いる。
また,木探索手順の分岐係数を低減するために,専用の分解手法を用いる。
論文 参考訳(メタデータ) (2023-07-25T12:33:53Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - Proof Number Based Monte-Carlo Tree Search [1.93674821880689]
本稿では,モンテカルロ木探索(MCTS)とProof-Number Search(PNS)を組み合わせた新しいゲーム検索アルゴリズムであるPN-MCTSを提案する。
本研究は,MCTS木に蓄積された証明値と防腐数から得られる付加的な知識を活用可能な3つの領域を定義する。
実験の結果、PN-MCTSは全てのテストされたゲーム領域でMCTSを上回り、ライン・オブ・アクションで96.2%の勝利率を達成した。
論文 参考訳(メタデータ) (2023-03-16T16:27:07Z) - Optimisation of MCTS Player for The Lord of the Rings: The Card Game [0.0]
本稿では,モンテカルロツリーサーチ(MCTS)手法を用いて,人気カードゲーム「指輪のロード」の人工プレイヤーを作成する研究について述べる。
論文 参考訳(メタデータ) (2021-09-24T14:42:32Z) - MCTS Based Agents for Multistage Single-Player Card Game [0.0]
この記事では、カードゲームLord of the RingsにおけるMonte Carlo Tree Searchアルゴリズムの使用について紹介する。
主な課題はゲーム力学の複雑さであり、各ラウンドは5つの決定段階と2つのランダムステージから構成される。
様々な意思決定アルゴリズムをテストするために,ゲームシミュレータが実装されている。
論文 参考訳(メタデータ) (2021-09-24T10:56:54Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - An Empirical Study on the Generalization Power of Neural Representations
Learned via Visual Guessing Games [79.23847247132345]
本研究は,視覚質問応答(VQA)のような新しいNLP下流タスクにおいて,後から実行を依頼されたとき,人工エージェントが推測ゲームでどの程度の利益を得ることができるかを検討する。
提案手法は,1) エージェントがうまく推理ゲームを模倣することを学習する教師あり学習シナリオ,2) エージェントが単独でプレイする新しい方法,すなわち,反復経験学習(SPIEL)によるセルフプレイ(Self-play)を提案する。
論文 参考訳(メタデータ) (2021-01-31T10:30:48Z) - Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search [66.34387649910046]
モンテカルロ木探索(MCTS)は、囲碁やアタリゲームなど多くの領域で最先端の結果を得た。
我々は,現在の検索状況の不確かさを予測し,その結果を用いて検索をやめるべきかどうかを判断することで,この目標を達成することを提案する。
論文 参考訳(メタデータ) (2020-12-14T19:49:25Z) - Playing Carcassonne with Monte Carlo Tree Search [0.0]
我々は,モンテカルロ木探索 (MCTS) とラピッドアクション値推定 (MCTS-RAVE) をカーカッソンヌのゲームで使用することを検討した。
MCTSをベースとした手法とStar2.5アルゴリズムの長所を比較し,カーカッソンヌのゲームにおける競争結果が得られたことを報告した。
論文 参考訳(メタデータ) (2020-09-27T22:35:53Z) - Single-Agent Optimization Through Policy Iteration Using Monte-Carlo
Tree Search [8.22379888383833]
モンテカルロ・ツリー・サーチ(MCTS)と深部強化学習の組み合わせは,2プレイヤー完全情報ゲームにおける最先端の手法である。
本稿では,MCTS の変種を利用した探索アルゴリズムについて述べる。1) 潜在的に有界な報酬を持つゲームに対する新たなアクション値正規化機構,2) 効果的な探索並列化を可能にする仮想損失関数の定義,3) 世代ごとのセルフプレイによって訓練されたポリシーネットワークについて述べる。
論文 参考訳(メタデータ) (2020-05-22T18:02:36Z) - Learning Dynamic Belief Graphs to Generalize on Text-Based Games [55.59741414135887]
テキストベースのゲームをプレイするには、自然言語処理とシーケンシャルな意思決定のスキルが必要である。
本研究では,原文からエンドツーエンドに学習したグラフ構造化表現を用いて,エージェントがテキストベースのゲームでどのように計画・一般化できるかを検討する。
論文 参考訳(メタデータ) (2020-02-21T04:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。