Pediatric Wrist Fracture Detection in X-rays via YOLOv10 Algorithm and Dual Label Assignment System
- URL: http://arxiv.org/abs/2407.15689v2
- Date: Wed, 31 Jul 2024 15:28:39 GMT
- Title: Pediatric Wrist Fracture Detection in X-rays via YOLOv10 Algorithm and Dual Label Assignment System
- Authors: Ammar Ahmed, Abdul Manaf,
- Abstract summary: This study is the first to evaluate various YOLOv10 variants to assess their performance in detecting pediatric wrist fractures.
It investigates how changes in model complexity, scaling the architecture, and implementing a dual-label assignment strategy can enhance detection performance.
- Score: 2.4554686192257424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wrist fractures are highly prevalent among children and can significantly impact their daily activities, such as attending school, participating in sports, and performing basic self-care tasks. If not treated properly, these fractures can result in chronic pain, reduced wrist functionality, and other long-term complications. Recently, advancements in object detection have shown promise in enhancing fracture detection, with systems achieving accuracy comparable to, or even surpassing, that of human radiologists. The YOLO series, in particular, has demonstrated notable success in this domain. This study is the first to provide a thorough evaluation of various YOLOv10 variants to assess their performance in detecting pediatric wrist fractures using the GRAZPEDWRI-DX dataset. It investigates how changes in model complexity, scaling the architecture, and implementing a dual-label assignment strategy can enhance detection performance. Experimental results indicate that our trained model achieved mean average precision (mAP@50-95) of 51.9\% surpassing the current YOLOv9 benchmark of 43.3\% on this dataset. This represents an improvement of 8.6\%. The implementation code is publicly available at https://github.com/ammarlodhi255/YOLOv10-Fracture-Detection
Related papers
- Pediatric Wrist Fracture Detection Using Feature Context Excitation Modules in X-ray Images [0.0]
This work introduces four variants of Feature Contexts Excitation-YOLOv8 model, each incorporating a different FCE module.
Experimental results on GRAZPEDWRI-DX dataset demonstrate that our proposed YOLOv8+GC-M3 model improves the mAP@50 value from 65.78% to 66.32%.
Our proposed YOLOv8+SE-M3 model achieves the highest mAP@50 value of 67.07%, exceeding the SOTA performance.
arXiv Detail & Related papers (2024-10-01T19:45:01Z) - YOLOv8-ResCBAM: YOLOv8 Based on An Effective Attention Module for Pediatric Wrist Fracture Detection [0.0]
This paper proposes YOLOv8-ResCBAM, which incorporates Convolutional Block Attention Module integrated with resblock (ResCBAM) into the original YOLOv8 network architecture.
The experimental results on the GRAZPEDWRI-DX dataset demonstrate that the mean Average Precision calculated at Intersection over Union threshold of 0.5 (mAP 50) of the proposed model increased from 63.6% to 65.8%.
arXiv Detail & Related papers (2024-09-27T15:19:51Z) - Enhancing Wrist Fracture Detection with YOLO [3.2049746597433746]
This study employs state-of-the-art single-stage deep neural network-based detection models YOLOv5, YOLOv6, YOLOv7, and YOLOv8 to detect wrist abnormalities.
We found that these YOLO models outperform the commonly used two-stage detection algorithm, Faster R-CNN, in fracture detection.
arXiv Detail & Related papers (2024-07-17T14:21:53Z) - Global Context Modeling in YOLOv8 for Pediatric Wrist Fracture Detection [0.0]
Children often suffer wrist injuries in daily life, while fracture injuring radiologists need to analyze and interpret X-ray images before surgical treatment.
The development of deep learning has enabled neural network models to work as computer-assisted diagnosis (CAD) tools.
This paper proposes the YOLOv8 model for fracture detection, which is an improved version of the YOLOv8 model with the GC block.
arXiv Detail & Related papers (2024-07-03T14:36:07Z) - YOLOv9 for Fracture Detection in Pediatric Wrist Trauma X-ray Images [0.0]
This paper is the first to apply the YOLOv9 algorithm model to the fracture detection task as computer-assisted diagnosis (CAD)
Experimental results demonstrate that compared to the mAP 50-95 of the current state-of-the-art (SOTA) model, the YOLOv9 model increased the value from 42.16% to 43.73%, with an improvement of 3.7%.
arXiv Detail & Related papers (2024-03-17T15:47:54Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
Pruning has emerged as a powerful technique for compressing deep neural networks, reducing memory usage and inference time without significantly affecting overall performance.
This work represents a first step toward understanding the impact of pruning on model behavior in deep long-tailed, multi-label medical image classification.
arXiv Detail & Related papers (2023-08-17T20:40:30Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
This work presents a Deep Learning method based on the late fusion of different convolutional architectures.
We built four training datasets combining images from public chest x-ray datasets and our institutional archive.
We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool.
arXiv Detail & Related papers (2020-12-23T14:38:35Z) - Grading Loss: A Fracture Grade-based Metric Loss for Vertebral Fracture
Detection [58.984536305767996]
We propose a representation learning-inspired approach for automated vertebral fracture detection.
We present a novel Grading Loss for learning representations that respect Genant's fracture grading scheme.
On a publicly available spine dataset, the proposed loss function achieves a fracture detection F1 score of 81.5%.
arXiv Detail & Related papers (2020-08-18T10:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.