論文の概要: Machine Learning for Economic Forecasting: An Application to China's GDP Growth
- arxiv url: http://arxiv.org/abs/2407.03595v1
- Date: Thu, 4 Jul 2024 03:04:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:31:32.361554
- Title: Machine Learning for Economic Forecasting: An Application to China's GDP Growth
- Title(参考訳): 経済予測のための機械学習:中国のGDP成長への応用
- Authors: Yanqing Yang, Xingcheng Xu, Jinfeng Ge, Yan Xu,
- Abstract要約: 本稿は、中国における四半期ごとのGDP成長を予測するために、さまざまな機械学習モデルを用いている。
これらのモデルのパフォーマンスの違いに寄与する要因を分析します。
- 参考スコア(独自算出の注目度): 2.899333881379661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to explore the application of machine learning in forecasting Chinese macroeconomic variables. Specifically, it employs various machine learning models to predict the quarterly real GDP growth of China, and analyzes the factors contributing to the performance differences among these models. Our findings indicate that the average forecast errors of machine learning models are generally lower than those of traditional econometric models or expert forecasts, particularly in periods of economic stability. However, during certain inflection points, although machine learning models still outperform traditional econometric models, expert forecasts may exhibit greater accuracy in some instances due to experts' more comprehensive understanding of the macroeconomic environment and real-time economic variables. In addition to macroeconomic forecasting, this paper employs interpretable machine learning methods to identify the key attributive variables from different machine learning models, aiming to enhance the understanding and evaluation of their contributions to macroeconomic fluctuations.
- Abstract(参考訳): 本稿では,中国のマクロ経済変数の予測における機械学習の適用について検討する。
具体的には、さまざまな機械学習モデルを使用して、中国における四半期毎のGDP成長を予測し、これらのモデルのパフォーマンスの違いに寄与する要因を分析する。
これらの結果から,機械学習モデルの平均予測誤差は,特に経済安定期において,従来の計量モデルや専門家予測よりも低いことが示唆された。
しかしながら、ある摂動点において、機械学習モデルは依然として伝統的な計量モデルより優れているが、専門家がマクロ経済環境とリアルタイム経済変数をより包括的に理解しているため、専門家の予測はより正確である可能性がある。
本稿では、マクロ経済予測に加えて、マクロ経済変動への寄与の理解と評価を高めることを目的として、異なる機械学習モデルから重要な帰属変数を特定するための解釈可能な機械学習手法を用いる。
関連論文リスト
- Enhancing Exchange Rate Forecasting with Explainable Deep Learning Models [1.5474412217744966]
伝統的な予測モデルは、交換レートデータの本質的な複雑さと非線形性に対処する際にしばしば混乱する。
本研究では,RSM/USD交換率の予測精度を高めるため,LSTM,CNN,トランスフォーマーベースアーキテクチャなどの高度なディープラーニングモデルの適用について検討する。
論文 参考訳(メタデータ) (2024-10-25T01:29:54Z) - Predicting Company Growth by Econophysics informed Machine Learning [1.0790314700764785]
本稿では,企業成長のためのエコノフィックモデルを組み込んだ機械学習に基づく予測フレームワークを提案する。
当社のモデルでは,法をスケールする企業固有の成長メカニズムと,ランダムな要因や個人的意思決定の影響による変動の両面を捉えている。
論文 参考訳(メタデータ) (2024-10-23T06:30:20Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
本研究では,機械学習の社会的影響を,特定の文脈に展開されるモデルの集合を考慮し検討する。
デプロイされた機械学習はシステム障害を起こしやすいため、利用可能なすべてのモデルに排他的に誤分類されているユーザもいます。
これらの例は、エコシステムレベルの分析が、機械学習の社会的影響を特徴づける独自の強みを持っていることを示している。
論文 参考訳(メタデータ) (2023-07-12T01:11:52Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Explaining Exchange Rate Forecasts with Macroeconomic Fundamentals Using
Interpretive Machine Learning [1.1602089225841632]
我々は、解釈的枠組みの中でカナダとアメリカのドル為替レートの基本的なモデルを開発する。
本稿では,機械学習を用いて為替レートを予測し,マクロ経済変数間の関係を正確に解析するための解釈可能性手法を提案する。
論文 参考訳(メタデータ) (2023-03-23T04:40:23Z) - Macroeconomic Predictions using Payments Data and Machine Learning [0.0]
本研究の目的は,非伝統的かつタイムリーなデータによって政策立案者がほぼリアルタイムで重要なマクロ経済指標を正確に推定する洗練されたモデルを提供できることを示すことである。
我々は、機械学習モデルにおける過度な適合と解釈可能性の課題を軽減し、ポリシー使用の有効性を改善するための、一連の計量的ツールを提供する。
支払いデータ、非線形手法、クロスバリデーション(クロスバリデーション)アプローチを備えた当社のモデルは、新型コロナウイルス(COVID-19)の期間中に上昇するマクロ経済の予測精度を最大40%向上させるのに役立ちます。
論文 参考訳(メタデータ) (2022-09-02T11:12:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Economic Recession Prediction Using Deep Neural Network [26.504845007567972]
本稿では,米国における景気後退の開始と終了を予測するための最も正確なモデルとして,オートエンコーダを用いたBi-LSTMの深層学習手法を同定する。
我々は、さまざまな機械学習モデルの能力を比較して、サンプル内とサンプル外の両方で優れた予測を生成するために、一般的なマクロおよびマーケットコンディション機能を採用する。
論文 参考訳(メタデータ) (2021-07-21T22:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。