Real-time Ship Recognition and Georeferencing for the Improvement of Maritime Situational Awareness
- URL: http://arxiv.org/abs/2410.04946v1
- Date: Mon, 7 Oct 2024 11:43:42 GMT
- Title: Real-time Ship Recognition and Georeferencing for the Improvement of Maritime Situational Awareness
- Authors: Borja Carrillo Perez,
- Abstract summary: This thesis presents an investigation into leveraging deep learning and computer vision to advance real-time ship recognition and georeferencing.
A novel dataset, ShipSG, is introduced, containing 3,505 images and 11,625 ship masks with corresponding class and geographic position.
A custom real-time segmentation architecture, ScatYOLOv8+CBAM, is designed for the NVIDIA Jetson AGX Xavier embedded system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In an era where maritime infrastructures are crucial, advanced situational awareness solutions are increasingly important. The use of optical camera systems can allow real-time usage of maritime footage. This thesis presents an investigation into leveraging deep learning and computer vision to advance real-time ship recognition and georeferencing for the improvement of maritime situational awareness. A novel dataset, ShipSG, is introduced, containing 3,505 images and 11,625 ship masks with corresponding class and geographic position. After an exploration of state-of-the-art, a custom real-time segmentation architecture, ScatYOLOv8+CBAM, is designed for the NVIDIA Jetson AGX Xavier embedded system. This architecture adds the 2D scattering transform and attention mechanisms to YOLOv8, achieving an mAP of 75.46% and an 25.3 ms per frame, outperforming state-of-the-art methods by over 5%. To improve small and distant ship recognition in high-resolution images on embedded systems, an enhanced slicing mechanism is introduced, improving mAP by 8% to 11%. Additionally, a georeferencing method is proposed, achieving positioning errors of 18 m for ships up to 400 m away and 44 m for ships between 400 m and 1200 m. The findings are also applied in real-world scenarios, such as the detection of abnormal ship behaviour, camera integrity assessment and 3D reconstruction. The approach of this thesis outperforms existing methods and provides a framework for integrating recognized and georeferenced ships into real-time systems, enhancing operational effectiveness and decision-making for maritime stakeholders. This thesis contributes to the maritime computer vision field by establishing a benchmark for ship segmentation and georeferencing research, demonstrating the viability of deep-learning-based recognition and georeferencing methods for real-time maritime monitoring.
Related papers
- Introducing VaDA: Novel Image Segmentation Model for Maritime Object Segmentation Using New Dataset [3.468621550644668]
The maritime shipping industry is undergoing rapid evolution driven by advancements in computer vision artificial intelligence (AI)
object recognition in maritime environments faces challenges such as light reflection, interference, intense lighting, and various weather conditions.
Existing AI recognition models and datasets have limited suitability for composing autonomous navigation systems.
arXiv Detail & Related papers (2024-07-12T05:48:53Z) - A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
We present a methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data.
The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns.
Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns.
arXiv Detail & Related papers (2024-06-14T12:15:15Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
Various animals exhibit accurate navigation using environment cues.
Inspired by animal navigation, this work proposes a bionic and data-driven approach for long-distance underwater navigation.
The proposed approach uses measured geomagnetic data for the navigation, and requires no GPS systems or geographical maps.
arXiv Detail & Related papers (2024-02-06T13:20:56Z) - Automatized marine vessel monitoring from sentinel-1 data using
convolution neural network [0.0]
We introduce wavelet transformation-based Convolution Neural Network approach to recognize objects from SAR images during the heavy naval traffic.
The information comprises Sentinel-1 SAR-C dual-polarization data acquisitions over the western coastal zones of India.
arXiv Detail & Related papers (2023-04-23T18:09:44Z) - A Transfer Learning-Based Approach to Marine Vessel Re-Identification [0.0]
This paper proposes a transfer dynamic alignment algorithm and simulates the swaying situation of vessels at sea.
It improves the mean average accuracy (mAP) by 10.2% and the first hit rate (Rank1) by 4.9% on average.
arXiv Detail & Related papers (2022-07-29T06:36:10Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
We propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme.
The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7%.
arXiv Detail & Related papers (2022-06-20T10:05:38Z) - xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture
Radar Imagery [52.67592123500567]
Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems.
It is now possible to automate detection of dark vessels day or night, under all-weather conditions.
xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission.
arXiv Detail & Related papers (2022-06-02T06:53:45Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z) - Real-Time target detection in maritime scenarios based on YOLOv3 model [65.35132992156942]
A novel ships dataset is proposed consisting of more than 56k images of marine vessels collected by means of web-scraping.
A YOLOv3 single-stage detector based on Keras API is built on top of this dataset.
arXiv Detail & Related papers (2020-02-10T15:25:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.