論文の概要: On the Benchmarking of LLMs for Open-Domain Dialogue Evaluation
- arxiv url: http://arxiv.org/abs/2407.03841v1
- Date: Thu, 4 Jul 2024 11:14:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:22:43.823872
- Title: On the Benchmarking of LLMs for Open-Domain Dialogue Evaluation
- Title(参考訳): オープンドメイン対話評価のためのLLMのベンチマークについて
- Authors: John Mendonça, Alon Lavie, Isabel Trancoso,
- Abstract要約: 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な機能を示した。
本稿では,現在の評価ベンチマークを批判的に検討し,従来の応答生成器の使用と品質面が,現代のチャットボットの機能を正確に反映できないことを強調した。
- 参考スコア(独自算出の注目度): 8.672875654352689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have showcased remarkable capabilities in various Natural Language Processing tasks. For automatic open-domain dialogue evaluation in particular, LLMs have been seamlessly integrated into evaluation frameworks, and together with human evaluation, compose the backbone of most evaluations. However, existing evaluation benchmarks often rely on outdated datasets and evaluate aspects like Fluency and Relevance, which fail to adequately capture the capabilities and limitations of state-of-the-art chatbot models. This paper critically examines current evaluation benchmarks, highlighting that the use of older response generators and quality aspects fail to accurately reflect modern chatbot capabilities. A small annotation experiment on a recent LLM-generated dataset (SODA) reveals that LLM evaluators such as GPT-4 struggle to detect actual deficiencies in dialogues generated by current LLM chatbots.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な機能を示した。
特にオープンドメインの自動対話評価において,LLMは評価フレームワークにシームレスに統合され,人間による評価とともに,ほとんどの評価のバックボーンを構成する。
しかし、既存の評価ベンチマークは、しばしば時代遅れのデータセットに依存し、FluencyやRelevanceのようなアスペクトを評価する。
本稿では,現在の評価ベンチマークを批判的に検討し,従来の応答生成器の使用と品質面が,現代のチャットボットの機能を正確に反映できないことを強調した。
最近のLSM生成データセット(SODA)における小さなアノテーション実験により、GPT-4のようなLCM評価器は、現在のLSMチャットボットが生成する対話における実際の欠陥を検出するのに苦労していることが明らかになった。
関連論文リスト
- Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
大言語モデル(LLM)は、要約やダイアログベースのタスクにおいて、非標準化メトリクスの自動評価器として機能する。
人間の判断に比較して,LLMが品質評価指標としていかに優れているかを検討するために,複数のプロンプト戦略にまたがる実験を行った。
論文 参考訳(メタデータ) (2024-12-12T13:31:58Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
大きな言語モデル(LLM)は、真の言語理解と適応性を示すのに失敗しながら、標準化されたテストで優れている。
NLP評価フレームワークの系統的解析により,評価スペクトルにまたがる広範囲にわたる脆弱性が明らかになった。
我々は、操作に抵抗し、データの汚染を最小限に抑え、ドメイン固有のタスクを評価する新しい評価方法の土台を築いた。
論文 参考訳(メタデータ) (2024-12-02T20:49:21Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
論文 参考訳(メタデータ) (2024-04-30T13:50:55Z) - MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluation [22.19073789961769]
生成型大規模言語モデル(LLM)は注目に値するが、これらのモデルによって生成されたテキストの品質は、しばしば永続的な問題を示す。
MATEval: "Multi-Agent Text Evaluation framework"を提案する。
本フレームワークは,評価プロセスの深度と広さを高めるために,自己回帰と整合性戦略とフィードバック機構を取り入れている。
論文 参考訳(メタデータ) (2024-03-28T10:41:47Z) - Can Large Language Models be Trusted for Evaluation? Scalable
Meta-Evaluation of LLMs as Evaluators via Agent Debate [74.06294042304415]
エージェント・ディベート支援型メタ評価フレームワークであるScaleEvalを提案する。
フレームワークのコードをGitHubで公開しています。
論文 参考訳(メタデータ) (2024-01-30T07:03:32Z) - A Comprehensive Analysis of the Effectiveness of Large Language Models
as Automatic Dialogue Evaluators [46.939611070781794]
大規模言語モデル(LLM)は、人間の裁判官にとって有望な代用であることが示されている。
我々は,最近出現した30個のLLMの多次元評価能力をターンレベルとダイアログレベルの両方で解析した。
また,旋回と対話の両レベルにおいて,様々な逆方向の摂動に対処するLLMの頑健性についても検討した。
論文 参考訳(メタデータ) (2023-12-24T04:50:57Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
MLLM(Multimodal large language model)は、AIアプリケーションの範囲を広げている。
既存のMLLMの自動評価手法は主にユーザエクスペリエンスを考慮せずにクエリを評価する場合に限られている。
本稿では,MLLM を判断基準として評価する MLLM の新しい評価パラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:04:25Z) - LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain
Conversations with Large Language Models [28.441725610692714]
大規模言語モデル(LLM)を用いたオープンドメイン会話のための多次元自動評価手法を提案する。
単一のモデルコールにおける会話品質の多次元を網羅する統合評価スキーマを利用する単一プロンプトベースの評価手法を設計する。
各種ベンチマークデータセットを用いたLCM-Evalの性能評価を行い,その有効性,効率,適応性について,最先端評価法と比較した。
論文 参考訳(メタデータ) (2023-05-23T05:57:09Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
大規模言語モデル(LLM)は、タスク命令のみを提供する場合、目に見えないタスクに対して例外的な性能を示す。
LLM評価の結果は、専門家による評価の結果と一致していることを示す。
論文 参考訳(メタデータ) (2023-05-03T07:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。