論文の概要: Perception-Guided Quality Metric of 3D Point Clouds Using Hybrid Strategy
- arxiv url: http://arxiv.org/abs/2407.03885v1
- Date: Thu, 4 Jul 2024 12:23:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:12:58.421094
- Title: Perception-Guided Quality Metric of 3D Point Clouds Using Hybrid Strategy
- Title(参考訳): ハイブリッド戦略を用いた3次元点雲の知覚誘導品質測定
- Authors: Yujie Zhang, Qi Yang, Yiling Xu, Shan Liu,
- Abstract要約: フルリファレンスポイントクラウド品質評価(FR-PCQA)は、歪んだポイントクラウドの品質を利用可能なリファレンスで推測することを目的としている。
既存のFR-PCQAメトリクスのほとんどは、人間の視覚システム(HVS)が様々な歪みレベルに応じて視覚情報に動的に取り組むという事実を無視している。
本稿では,2つの視覚的戦略を歪み度に関して適応的に活用し,点雲の質を予測するための知覚誘導ハイブリッド計量(PHM)を提案する。
- 参考スコア(独自算出の注目度): 38.942691194229724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full-reference point cloud quality assessment (FR-PCQA) aims to infer the quality of distorted point clouds with available references. Most of the existing FR-PCQA metrics ignore the fact that the human visual system (HVS) dynamically tackles visual information according to different distortion levels (i.e., distortion detection for high-quality samples and appearance perception for low-quality samples) and measure point cloud quality using unified features. To bridge the gap, in this paper, we propose a perception-guided hybrid metric (PHM) that adaptively leverages two visual strategies with respect to distortion degree to predict point cloud quality: to measure visible difference in high-quality samples, PHM takes into account the masking effect and employs texture complexity as an effective compensatory factor for absolute difference; on the other hand, PHM leverages spectral graph theory to evaluate appearance degradation in low-quality samples. Variations in geometric signals on graphs and changes in the spectral graph wavelet coefficients are utilized to characterize geometry and texture appearance degradation, respectively. Finally, the results obtained from the two components are combined in a non-linear method to produce an overall quality score of the tested point cloud. The results of the experiment on five independent databases show that PHM achieves state-of-the-art (SOTA) performance and offers significant performance improvement in multiple distortion environments. The code is publicly available at https://github.com/zhangyujie-1998/PHM.
- Abstract(参考訳): フルリファレンスポイントクラウド品質評価(FR-PCQA)は、歪んだポイントクラウドの品質を利用可能なリファレンスで推測することを目的としている。
既存のFR-PCQAメトリクスのほとんどは、人間の視覚システム(HVS)が様々な歪みレベル(例えば、高品質サンプルの歪み検出と低品質サンプルの外観認識)に応じて視覚情報に動的に取り組むという事実を無視し、統一された特徴を用いて点雲の品質を測定する。
このギャップを埋めるために,本論文では,2つの視覚的戦略を適応的に活用して点雲の質を予測するための知覚誘導ハイブリッド計量(PHM)を提案する。高品質な試料の可視差を測定するため,PHMはマスキング効果を考慮に入れ,絶対差の効果的な補正因子としてテクスチャ複雑性を利用する。一方,PHMはスペクトルグラフ理論を利用して,低品質試料の外観劣化を評価する。
グラフ上の幾何信号の変化とスペクトルグラフウェーブレット係数の変化を利用して、それぞれ幾何学的およびテクスチャ的外観劣化を特徴づける。
最後に、2つのコンポーネントから得られた結果を非線形法で組み合わせて、テストポイントクラウドの全体的な品質スコアを生成する。
5つの独立データベース上での実験結果から,PHMがSOTA(State-of-the-art)性能を達成し,複数歪み環境での大幅な性能向上を実現していることが示された。
コードはhttps://github.com/zhangyujie-1998/PHMで公開されている。
関連論文リスト
- Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - Simple Baselines for Projection-based Full-reference and No-reference
Point Cloud Quality Assessment [60.2709006613171]
投影型ポイントクラウド品質評価(PCQA)のための簡易ベースラインを提案する。
我々は、全参照(FR)タスクと非参照(NR)PCQAタスクの両方に対して、点雲から共通立方体状の投影プロセスによって得られる多重射影を用いる。
ICIP 2023 PCVQA Challengeに参加して,5トラック中4トラックで首位を獲得した。
論文 参考訳(メタデータ) (2023-10-26T04:42:57Z) - GQE-Net: A Graph-based Quality Enhancement Network for Point Cloud Color
Attribute [51.4803148196217]
本稿では,点雲の色歪みを低減するため,グラフベースの品質向上ネットワーク(GQE-Net)を提案する。
GQE-Netは、幾何学情報を補助入力とグラフ畳み込みブロックとして使用し、局所的な特徴を効率的に抽出する。
実験結果から,本手法は最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2023-03-24T02:33:45Z) - Reduced-Reference Quality Assessment of Point Clouds via
Content-Oriented Saliency Projection [17.983188216548005]
多くの高密度な3Dポイントクラウドは、従来の画像やビデオではなく、視覚オブジェクトを表現するために利用されてきた。
本稿では, 点雲に対する新しい, 効率的な還元参照品質指標を提案する。
論文 参考訳(メタデータ) (2023-01-18T18:00:29Z) - TCDM: Transformational Complexity Based Distortion Metric for Perceptual
Point Cloud Quality Assessment [24.936061591860838]
客観的クラウド品質評価(PCQA)研究の目標は、ポイントクラウド品質を一貫した方法で測定するメトリクスを開発することである。
歪んだ点雲を基準に戻す複雑さを計測することで点雲の質を評価する。
提案手法の有効性を,5つのパブリッククラウド品質評価データベース上で行った広範囲な実験を通じて評価した。
論文 参考訳(メタデータ) (2022-10-10T13:20:51Z) - MM-PCQA: Multi-Modal Learning for No-reference Point Cloud Quality
Assessment [32.495387943305204]
マルチモーダル方式で,新しい非参照点クラウド品質評価(NR-PCQA)指標を提案する。
具体的には、点雲を部分モデルに分割し、点シフトやダウンサンプリングのような局所的な幾何学的歪みを表す。
目標を達成するために、サブモデルと投影された画像は、ポイントベースおよびイメージベースニューラルネットワークで符号化される。
論文 参考訳(メタデータ) (2022-09-01T06:11:12Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
本研究では,3次元高密度点雲の知覚的視覚的品質を自動評価するために,Structure Guided Resampling (SGR) を用いた客観的点雲品質指標を提案する。
提案するSGRは,参照情報の不要な汎用ブラインド品質評価手法である。
論文 参考訳(メタデータ) (2022-08-31T02:42:55Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
レート歪み最適化では、ビットレートの制約を受ける再構成品質尺度を最大化してエンコーダ設定を決定する。
本稿では,V-PCC幾何および色量化パラメータを変数とする線形知覚品質モデルを提案する。
400個の圧縮された3D点雲による主観的品質試験の結果,提案モデルが平均評価値とよく相関していることが示唆された。
また、同じ目標ビットレートに対して、提案モデルに基づくレート歪みの最適化は、ポイント・ツー・ポイントの客観的な品質指標による徹底的な探索に基づくレート歪みの最適化よりも高い知覚品質を提供することを示した。
論文 参考訳(メタデータ) (2020-11-25T12:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。