論文の概要: Support Vector Based Anomaly Detection in Federated Learning
- arxiv url: http://arxiv.org/abs/2407.03920v1
- Date: Thu, 4 Jul 2024 13:32:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 18:03:13.811184
- Title: Support Vector Based Anomaly Detection in Federated Learning
- Title(参考訳): フェデレーション学習における支援ベクトルに基づく異常検出
- Authors: Massimo Frasson, Dario Malchiodi,
- Abstract要約: 異常検出は、サイバーセキュリティから産業システムまで、様々な領域において重要な役割を果たす。
従来の集中型アプローチは、データプライバシに関する課題に遭遇することが多い。
この研究は、フェデレートされた環境での異常検出のための2つの革新的なアルゴリズムを導入している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection plays a crucial role in various domains, from cybersecurity to industrial systems. However, traditional centralized approaches often encounter challenges related to data privacy. In this context, Federated Learning emerges as a promising solution. This work introduces two innovative algorithms--Ensemble SVDD and Support Vector Election--that leverage Support Vector Machines for anomaly detection in a federated setting. In comparison with the Neural Networks typically used in within Federated Learning, these new algorithms emerge as potential alternatives, as they can operate effectively with small datasets and incur lower computational costs. The novel algorithms are tested in various distributed system configurations, yielding promising initial results that pave the way for further investigation.
- Abstract(参考訳): 異常検出は、サイバーセキュリティから産業システムまで、様々な領域において重要な役割を果たす。
しかし、従来の集中型アプローチは、データプライバシに関する課題にしばしば遭遇する。
この文脈では、フェデレートラーニングは有望なソリューションとして現れます。
本研究は, SVDDとSupport Vector Electionという2つの革新的なアルゴリズムを導入し, フェデレートされた環境での異常検出にSupport Vector Machinesを活用する。
フェデレートラーニングで一般的に使用されるニューラルネットワークと比較して、これらの新しいアルゴリズムは、小さなデータセットで効果的に動作し、計算コストを低減できるため、潜在的な代替手段として出現する。
新たなアルゴリズムは、様々な分散システム構成でテストされ、将来性のある初期結果をもたらし、さらなる調査の道を開く。
関連論文リスト
- Deep Anomaly Detection in Text [3.4265828682659705]
本論文は,テキストコーパスに適したプリテキストタスクを活用することによって,異常を検出する手法を開発することを目的とする。
このアプローチは、半教師付きおよび教師なしの異常検出の両方において、2つのデータセットである20NewsgroupsとAG Newsの最先端性を大幅に改善する。
論文 参考訳(メタデータ) (2023-12-14T22:04:43Z) - Intrusion Detection: A Deep Learning Approach [0.0]
本稿では,畳み込みニューラルネットワーク(CNN)モジュールとLong Short Term Memory(LSTM)モジュール,SVM(Support Vector Machine)分類機能を備えた侵入検出システムを提案する。
この分析に続いて、従来の機械学習技術と深層学習手法を比較し、さらに探索可能な領域を強調した。
論文 参考訳(メタデータ) (2023-06-13T07:58:40Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - GowFed -- A novel Federated Network Intrusion Detection System [0.15469452301122172]
本研究は,Gower Dissimilarity行列とFederated Averagingを併用したネットワーク脅威検出システムであるGowFedを紹介する。
GowFedのアプローチは,(1)バニラバージョン,(2)アテンション機構を備えたバージョンなど,最先端の知識に基づいて開発されている。
全体として、GowFedは、産業レベルのネットワークにおけるネットワーク脅威を検出するためのフェデレートラーニングとガウワーの相違行列の併用に向けた最初の一歩となる。
論文 参考訳(メタデータ) (2022-10-28T23:53:37Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - A Federated Learning Aggregation Algorithm for Pervasive Computing:
Evaluation and Comparison [0.6299766708197883]
広範コンピューティングは、サービス提供のために、リビングスペースに接続デバイスをインストールすることを促進する。
エッジリソースの高度な利用と、エンジニアリングアプリケーションのための機械学習技術の統合だ。
本稿では,FedDistと呼ばれる新しいアグリゲーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-19T19:43:28Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - A cognitive based Intrusion detection system [0.0]
侵入検知は、コンピュータネットワークのセキュリティを提供する重要なメカニズムの1つである。
本稿では,Deep Neural Network Ans Supportctor Machine Classifierに基づく新しい手法を提案する。
提案手法は, 侵入検知に類似した手法により, より精度良く攻撃を予測できる。
論文 参考訳(メタデータ) (2020-05-19T13:30:30Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。