論文の概要: Meta-prompting Optimized Retrieval-augmented Generation
- arxiv url: http://arxiv.org/abs/2407.03955v1
- Date: Thu, 4 Jul 2024 14:20:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:43:28.631282
- Title: Meta-prompting Optimized Retrieval-augmented Generation
- Title(参考訳): メタプロンプト最適化検索拡張生成
- Authors: João Rodrigues, António Branco,
- Abstract要約: 下流タスクにおける大規模言語モデルの性能を活かすため、検索拡張世代は外部ソースから取得したコンテンツに頼っている。
本稿では,メタプロンプト最適化を利用して,検索したコンテンツをプロンプトに含める前に洗練する手法を提案する。
- 参考スコア(独自算出の注目度): 1.3996171129586734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation resorts to content retrieved from external sources in order to leverage the performance of large language models in downstream tasks. The excessive volume of retrieved content, the possible dispersion of its parts, or their out of focus range may happen nevertheless to eventually have a detrimental rather than an incremental effect. To mitigate this issue and improve retrieval-augmented generation, we propose a method to refine the retrieved content before it is included in the prompt by resorting to meta-prompting optimization. Put to empirical test with the demanding multi-hop question answering task from the StrategyQA dataset, the evaluation results indicate that this method outperforms a similar retrieval-augmented system but without this method by over 30%.
- Abstract(参考訳): 下流タスクにおける大規模言語モデルの性能を活かすため、検索拡張世代は外部ソースから取得したコンテンツに頼っている。
抽出されたコンテンツの過剰な量、その部分の分散、または焦点外範囲は、いずれは漸進的な効果ではなく有害な結果をもたらす可能性がある。
この問題を緩和し,検索拡張生成を改善するために,メタプロンプト最適化に頼って,プロンプトに含める前に検索内容を洗練する方法を提案する。
提案手法は,StrategyQAデータセットから要求されるマルチホップ質問応答タスクを用いて実証実験を行い,この手法が類似の検索拡張システムよりも30%以上優れていることを示す。
関連論文リスト
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
言語モデルの性能の効果的な指標としての可能性を示す。
提案手法は,より優れた性能をもたらすプロンプトの選択と構築のための尺度として,疑似可能性を利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:14:09Z) - Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation [3.2134014920850364]
大型言語モデル(LLM)は時相の誤りや幻覚的内容の生成といった課題に直面していることが多い。
二重角評価による検索拡張生成フレームワーク textitThink-then-Act を提案する。
論文 参考訳(メタデータ) (2024-06-18T20:51:34Z) - Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs [45.83950260830323]
この作業は、イベント抽出を自動化するために、大規模言語モデルを活用することに焦点を当てている。
タスクをイベント検出とイベント引数抽出に分解することで、幻覚に対処する新しい方法が導入された。
論文 参考訳(メタデータ) (2024-06-03T06:55:10Z) - xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token [108.7069350303884]
xRAGは、検索拡張生成に適した、革新的なコンテキスト圧縮手法である。
xRAGは、言語モデル表現空間に文書の埋め込みをシームレスに統合する。
実験の結果、xRAGは6つの知識集約タスクで平均10%以上の改善を達成していることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:15:17Z) - ExcluIR: Exclusionary Neural Information Retrieval [74.08276741093317]
本稿では,排他的検索のためのリソースセットであるExcluIRを提案する。
評価ベンチマークには3,452の高品質な排他的クエリが含まれている。
トレーニングセットには70,293の排他的クエリが含まれており、それぞれに正のドキュメントと負のドキュメントがペアリングされている。
論文 参考訳(メタデータ) (2024-04-26T09:43:40Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - Noisy Self-Training with Synthetic Queries for Dense Retrieval [49.49928764695172]
合成クエリと組み合わせた,ノイズの多い自己学習フレームワークを提案する。
実験結果から,本手法は既存手法よりも一貫した改善が得られた。
我々の手法はデータ効率が良く、競争のベースラインより優れています。
論文 参考訳(メタデータ) (2023-11-27T06:19:50Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
生成検索システムは、しばしばクエリに対する応答として、接地された生成されたテキストを直接返す。
このような生成的アドホック検索を適切に評価するには,テキスト応答の有用性の定量化が不可欠である。
論文 参考訳(メタデータ) (2023-11-08T14:05:00Z) - End-to-End Autoregressive Retrieval via Bootstrapping for Smart Reply
Systems [7.2949782290577945]
ブートストラップによって得られた(メッセージ,返信セット)ペアのデータセットから,スマートリプライタスクをエンドツーエンドに学習する新たなアプローチを検討する。
実験結果から、この手法は3つのデータセットにわたる最先端のベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2023-10-29T09:56:17Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
検索されたパスと大きな言語モデル(LLM)の統合は、オープンドメインの質問応答の改善に大きく貢献している。
本稿では,検索したパスをLLMと組み合わせて回答生成を向上させる方法について検討する。
論文 参考訳(メタデータ) (2023-08-24T05:26:54Z) - AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation [44.93777271276723]
擬似クエリドキュメントペアを作成することにより,アノテーションフリーでスケーラブルなトレーニングを可能にする2つのアプローチを提案する。
クエリ抽出方法は、元のドキュメントから有能なスパンを選択して擬似クエリを生成する。
転送クエリ生成方法は、要約などの他のNLPタスクのために訓練された生成モデルを使用して、擬似クエリを生成する。
論文 参考訳(メタデータ) (2022-12-17T10:43:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。