論文の概要: Behavioural gap assessment of human-vehicle interaction in real and virtual reality-based scenarios in autonomous driving
- arxiv url: http://arxiv.org/abs/2407.04070v1
- Date: Thu, 4 Jul 2024 17:20:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 17:14:12.602859
- Title: Behavioural gap assessment of human-vehicle interaction in real and virtual reality-based scenarios in autonomous driving
- Title(参考訳): 自律運転における現実と仮想現実のシナリオにおける人車間相互作用の行動ギャップ評価
- Authors: Sergio. Martín Serrano, Rubén Izquierdo, Iván García Daza, Miguel Ángel Sotelo, D. Fernández Llorca,
- Abstract要約: 我々は,VR実験に携わる参加者の行動の相違を,等価な実世界の状況と比較して捉える概念である行動ギャップ(obactiveal gap)と呼ぶものを評価するための,最初の,革新的なアプローチを提案する。
実験では、歩行者は異なる運転スタイルと外部ヒューマン・マシン・インタフェース(eHMI)の存在下で道路を横断しようとする。
結果は、参加者がVRに対してより慎重で好奇心を持ち、そのスピードと判断に影響を与え、VRインターフェースが行動に大きく影響していることを示している。
- 参考スコア(独自算出の注目度): 7.588679613436823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of autonomous driving research, the use of immersive virtual reality (VR) techniques is widespread to enable a variety of studies under safe and controlled conditions. However, this methodology is only valid and consistent if the conduct of participants in the simulated setting mirrors their actions in an actual environment. In this paper, we present a first and innovative approach to evaluating what we term the behavioural gap, a concept that captures the disparity in a participant's conduct when engaging in a VR experiment compared to an equivalent real-world situation. To this end, we developed a digital twin of a pre-existed crosswalk and carried out a field experiment (N=18) to investigate pedestrian-autonomous vehicle interaction in both real and simulated driving conditions. In the experiment, the pedestrian attempts to cross the road in the presence of different driving styles and an external Human-Machine Interface (eHMI). By combining survey-based and behavioural analysis methodologies, we develop a quantitative approach to empirically assess the behavioural gap, as a mechanism to validate data obtained from real subjects interacting in a simulated VR-based environment. Results show that participants are more cautious and curious in VR, affecting their speed and decisions, and that VR interfaces significantly influence their actions.
- Abstract(参考訳): 自律運転研究の分野では、没入型バーチャルリアリティ(VR)技術の使用が広く普及し、安全かつ制御された条件下での様々な研究を可能にしている。
しかし、シミュレーションされた設定の参加者の行動が実際の環境での行動を反映している場合のみ、この手法は有効で一貫したものである。
本稿では,VR実験に携わる参加者の行動の相違を現実の状況と同等に捉えた概念である,行動ギャップ(obactiveal gap)と呼ぶものを評価するための,最初の,革新的なアプローチを提案する。
そこで我々は,既存の横断歩道のデジタルツインを開発し,実際の運転条件とシミュレーション運転条件の両方において,歩行者と自律走行車間の相互作用を調査するためのフィールド実験(N=18)を行った。
実験では、歩行者は異なる運転スタイルと外部のヒューマン・マシン・インタフェース(eHMI)の存在下で道路を横断しようと試みた。
調査に基づく行動分析手法と行動分析手法を組み合わせることで、シミュレーションされたVR環境で対話する実際の被験者から得られたデータを検証するメカニズムとして、行動ギャップを経験的に評価する定量的手法を開発する。
結果は、参加者がVRに対してより慎重で好奇心を持ち、そのスピードと判断に影響を与え、VRインターフェースが行動に大きく影響していることを示している。
関連論文リスト
- Analyze Drivers' Intervention Behavior During Autonomous Driving -- A
VR-incorporated Approach [2.7532019227694344]
この研究は、自動運転車の運転に関わる人間のドライバーの介入行動を理解することに光を当てている。
仮想リアリティ(VR)と交通マイクロシミュレーションを統合する実験環境が実装された。
介入の確率、事故率などのパフォーマンス指標が定義され、リスクレベルを定量化し比較するために使用される。
論文 参考訳(メタデータ) (2023-12-04T06:36:57Z) - How Simulation Helps Autonomous Driving:A Survey of Sim2real, Digital
Twins, and Parallel Intelligence [16.24370001383615]
シミュレーションで学んだ運転知識を現実に適応させる方法が重要な問題となっている。
仮想シミュレーションの世界は、照明、テクスチャ、車両のダイナミクス、エージェントの振る舞いなど多くの面で現実世界と異なる。
現実のギャップ問題に対処するアプローチの3つのカテゴリ - シミュレーションから現実への知識伝達(sim2real)、デジタル双生児における学習(DT)、並列インテリジェンスによる学習(PI)
論文 参考訳(メタデータ) (2023-05-02T09:00:32Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
我々はVR/ARにおける自然的および直感的な力入力のための学習ベースのニューラルネットワークを設計する。
我々は,3.3%の平均誤差で指の力量をリアルタイムでデコードし,キャリブレーションの少ない新規ユーザに一般化できることを実証した。
今後のVR/ARにおける、より現実的な物理性に向けた研究を進めるために、我々の研究成果を期待する。
論文 参考訳(メタデータ) (2022-10-03T20:51:25Z) - Mind the Gap! A Study on the Transferability of Virtual vs
Physical-world Testing of Autonomous Driving Systems [6.649715954440713]
私たちはDonkey Carのオープンソースフレームワークを活用して、物理的に小型の車両にデプロイされたSDCのテストと仮想シミュレーションされたテストとを経験的に比較します。
多くのテスト結果が仮想環境と物理環境の間で伝達される一方で、仮想環境と物理環境の間の現実的ギャップに寄与する重要な欠点も確認した。
論文 参考訳(メタデータ) (2021-12-21T14:28:35Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
データ駆動シミュレータは、ポリシー学習の駆動に高いデータ効率を約束する。
小さな基盤となるデータセットは、インタラクティブな運転を学ぶための興味深い、挑戦的なエッジケースを欠いていることが多い。
本研究では,ロバストな運転方針の学習に塗装されたアドカーを用いたシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:14:02Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Game and Simulation Design for Studying Pedestrian-Automated Vehicle
Interactions [1.3764085113103217]
我々はまず,現場で現代的ツールを提示し,歩行者視点研究を促進する新しいアプリケーションの設計と開発を提案する。
我々は3段階のユーザ体験実験を行い、参加者は様々なシナリオでアプリケーションの使用前後で質問に答える。
論文 参考訳(メタデータ) (2021-09-30T15:26:18Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
物体選択と参照のための自動車応用において、手指しと目視が広く研究されている。
既存の車外参照手法は静的な状況に重点を置いているが、移動車両の状況は極めて動的であり、安全性に制約がある。
本研究では,外部オブジェクトを参照するタスクにおいて,各モダリティの具体的特徴とそれら間の相互作用について検討する。
論文 参考訳(メタデータ) (2020-09-23T14:56:19Z) - Building Trust in Autonomous Vehicles: Role of Virtual Reality Driving
Simulators in HMI Design [8.39368916644651]
本研究では,生理的信号から収集した連続的客観的情報に基づいて,AVのユーザエクスペリエンスを検証する手法を提案する。
本手法を車両の感覚・計画システムに関する視覚的手がかりを提供するヘッドアップディスプレイインタフェースの設計に適用した。
論文 参考訳(メタデータ) (2020-07-27T08:42:07Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
インタラクティブで具体化された視覚AIの研究を民主化するためにRoboTHORを導入する。
シミュレーションで訓練されたモデルの性能は,シミュレーションと慎重に構築された物理アナログの両方で試験される場合,大きな差があることが示される。
論文 参考訳(メタデータ) (2020-04-14T20:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。