論文の概要: Quantum Convolutional Neural Network for Phase Recognition in Two Dimensions
- arxiv url: http://arxiv.org/abs/2407.04114v1
- Date: Thu, 4 Jul 2024 18:38:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 15:10:29.220104
- Title: Quantum Convolutional Neural Network for Phase Recognition in Two Dimensions
- Title(参考訳): 2次元の位相認識のための量子畳み込みニューラルネットワーク
- Authors: Leon C. Sander, Nathan A. McMahon, Petr Zapletal, Michael J. Hartmann,
- Abstract要約: 量子畳み込みニューラルネットワーク(Quantum Convolutional Neural Network, QCNN)は、物質の量子位相を低コストで認識するための量子回路である。
ここでは,2次元の位相認識が可能なQCNNを構築し,トーリック符号相から常磁性相への位相遷移を正確に同定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum convolutional neural networks (QCNNs) are quantum circuits for recognizing quantum phases of matter at low sampling cost and have been designed for condensed matter systems in one dimension. Here we construct a QCNN that can perform phase recognition in two dimensions and correctly identify the phase transition from a Toric Code phase with $\mathbb{Z}_2$-topological order to the paramagnetic phase. The network also exhibits a noise threshold up to which the topological order is recognized. Our work generalizes phase recognition with QCNNs to higher spatial dimensions and intrinsic topological order, where exploration and characterization via classical numerics become challenging.
- Abstract(参考訳): 量子畳み込みニューラルネットワーク(Quantum Convolutional Neural Network, QCNN)は、低サンプリングコストで物質の量子位相を認識する量子回路であり、1次元の凝縮物質系のために設計されている。
ここでは,2次元の位相認識が可能なQCNNを構築し,Toric Code相から常磁性相への位相遷移を$\mathbb{Z}_2$-topological orderで正確に同定する。
ネットワークはまた、トポロジ的順序が認識されるまでのノイズ閾値を示す。
本研究は,QCNNを用いた位相認識を高次元および固有位相順に一般化し,古典的な数値による探索と特徴付けが困難になる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Simulating 2D topological quantum phase transitions on a digital quantum computer [3.727382912998531]
多体基底状態の効率的な調製は、量子多体系の研究において量子コンピュータのパワーを利用するための鍵となる。
本稿では,2次元の位相量子相転移にまたがる基底状態の族を調製する,線形深度パラメータ化量子回路の設計法を提案する。
2D isoTNSは1次元の量子ビット配列のみを必要とするホログラフィック量子アルゴリズムによって効率よくシミュレートできることを示す。
論文 参考訳(メタデータ) (2023-12-08T15:01:44Z) - Model-Independent Learning of Quantum Phases of Matter with Quantum
Convolutional Neural Networks [1.9404281424219032]
量子畳み込みニューラルネットワーク(QCNN)は、物質ギャップ量子相の分類器として導入されている。
位相保存摂動下で変化しない順序パラメータを見つけるために,QCNNを訓練するためのモデルに依存しないプロトコルを提案する。
論文 参考訳(メタデータ) (2022-11-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
我々は、状態準備のために局所的な断熱ランプを使用して、時間的進化を通じて量子コンピュータ上の基底状態位相図を直接計算することができる。
我々は,IBMの量子マシンを用いて,二つのサイトシステムと3つのサイトシステムの両方の正確な位相図を計算できる。
論文 参考訳(メタデータ) (2021-12-08T23:59:33Z) - An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver [0.0]
最近提案された量子畳み込みニューラルネットワーク(QCNN)は、量子回路を使用するための新しいフレームワークを提供する。
ここでは、一次元逆場イジングモデル(TFIM)に対する変分量子固有解器の波動関数によるQCNNのトレーニング結果を示す。
QCNNは、それから遠く離れた波動関数によって訓練されたとしても、量子臨界点の周りの波動関数の対応する位相を予測するために訓練することができる。
論文 参考訳(メタデータ) (2021-11-09T12:08:49Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
量子ニューラルネットワークは、ユニタリ演算、測定、フィードフォワードの約束を組み合わせることで、量子状態の特定の特徴を認識するように調整され、少ない測定とエラーを許容する。
我々は、7量子ビット超伝導量子プロセッサ上で量子畳み込みニューラルネットワーク(QCNN)を実現し、非ゼロ弦順序パラメータを特徴とするスピンモデルの対称性保護位相を同定する。
その結果,QCNNは有限忠実ゲート自体で構成されているにもかかわらず,用意された状態に対する弦順パラメータの直接測定よりも位相位相を高い忠実度で認識していることがわかった。
論文 参考訳(メタデータ) (2021-09-13T12:32:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Probing Criticality in Quantum Spin Chains with Neural Networks [0.0]
隠れた層を持たないニューラルネットワークでさえ、磁気秩序と乱れ相の区別を効果的に訓練できることが示される。
我々の結果は、相互作用する量子多体系の幅広いクラスに拡張され、多体量子物理学へのニューラルネットワークの広範な適用性を示す。
論文 参考訳(メタデータ) (2020-05-05T12:34:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。