S2LPP: Small-to-Large Prompt Prediction across LLMs
- URL: http://arxiv.org/abs/2505.20097v1
- Date: Mon, 26 May 2025 15:07:30 GMT
- Title: S2LPP: Small-to-Large Prompt Prediction across LLMs
- Authors: Liang Cheng, Tianyi LI, Zhaowei Wang, Mark Steedman,
- Abstract summary: We show that prompt consistency extends to other tasks, such as Natural Language Inference.<n>We propose a method to use a smaller model to select effective prompt templates for a larger model.
- Score: 11.917108741933356
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The performance of pre-trained Large Language Models (LLMs) is often sensitive to nuances in prompt templates, requiring careful prompt engineering, adding costs in terms of computing and human effort. In this study, we present experiments encompassing multiple LLMs variants of varying sizes aimed at probing their preference with different prompts. Through experiments on Question Answering, we show prompt preference consistency across LLMs of different sizes. We also show that this consistency extends to other tasks, such as Natural Language Inference. Utilizing this consistency, we propose a method to use a smaller model to select effective prompt templates for a larger model. We show that our method substantially reduces the cost of prompt engineering while consistently matching performance with optimal prompts among candidates. More importantly, our experiment shows the efficacy of our strategy across fourteen LLMs and its applicability to a broad range of NLP tasks, highlighting its robustness
Related papers
- Revisiting Prompt Engineering: A Comprehensive Evaluation for LLM-based Personalized Recommendation [2.3650193864974978]
Large language models (LLMs) can perform recommendation tasks by taking prompts written in natural language as input.<n>This paper focuses on a single-user setting, where no information from other users is used.
arXiv Detail & Related papers (2025-07-17T20:26:00Z) - Grammar-Guided Evolutionary Search for Discrete Prompt Optimisation [63.97051732013936]
We propose an evolutionary search approach to automated discrete prompt optimisation consisting of two phases.<n>In the first phase, grammar-guided genetic programming is invoked to synthesise prompt-creating programmes.<n>In the second phase, local search is applied to explore the neighbourhoods of best-performing programmes.
arXiv Detail & Related papers (2025-07-14T14:34:15Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Large Language Models Know What Makes Exemplary Contexts [42.90814615222177]
In-context learning (ICL) has proven to be a significant capability with the advancement of Large Language models (LLMs)
This paper presents a unified framework for LLMs that allows them to self-select influential in-context examples to compose their contexts.
arXiv Detail & Related papers (2024-08-14T12:32:41Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.<n>We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Experimental Design for Active Transductive Inference in Large Language Models [18.2671641610825]
We use active learning for adaptive prompt design and call it Active In-context Prompt Design (AIPD)
We design the LLM prompt by adaptively choosing few-shot examples from a training set to optimize performance on a test set.
We propose two algorithms, GO and SAL, which differ in how the few-shot examples are chosen.
arXiv Detail & Related papers (2024-04-12T23:27:46Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.82812214830023]
Efficient Prompting Methods have attracted a wide range of attention.<n>We discuss Automatic Prompt Engineering for different prompt components and Prompt Compression in continuous and discrete spaces.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.