論文の概要: Query-Guided Self-Supervised Summarization of Nursing Notes
- arxiv url: http://arxiv.org/abs/2407.04125v2
- Date: Mon, 02 Dec 2024 09:42:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:57:02.067602
- Title: Query-Guided Self-Supervised Summarization of Nursing Notes
- Title(参考訳): 質問ガイドによる看護ノートの自己監督要約
- Authors: Ya Gao, Hans Moen, Saila Koivusalo, Miika Koskinen, Pekka Marttinen,
- Abstract要約: 本稿では,QGSummについて紹介する。QGSummは,抽象看護ノート要約のためのクエリ誘導型自己教師型ドメイン適応手法である。
本研究は,看護ノート要約のためのアプローチや他の最先端の大規模言語モデル (LLM) について検討する。
- 参考スコア(独自算出の注目度): 5.835276312834499
- License:
- Abstract: Nursing notes, an important part of Electronic Health Records (EHRs), track a patient's health during a care episode. Summarizing key information in nursing notes can help clinicians quickly understand patients' conditions. However, existing summarization methods in the clinical setting, especially abstractive methods, have overlooked nursing notes and require reference summaries for training. We introduce QGSumm, a novel query-guided self-supervised domain adaptation approach for abstractive nursing note summarization. The method uses patient-related clinical queries for guidance, and hence does not need reference summaries for training. Through automatic experiments and manual evaluation by an expert clinician, we study our approach and other state-of-the-art Large Language Models (LLMs) for nursing note summarization. Our experiments show: 1) GPT-4 is competitive in maintaining information in the original nursing notes, 2) QGSumm can generate high-quality summaries with a good balance between recall of the original content and hallucination rate lower than other top methods. Ultimately, our work offers a new perspective on conditional text summarization, tailored to clinical applications.
- Abstract(参考訳): EHR(Electronic Health Records)の重要な部分である看護ノートは、ケアエピソード中の患者の健康を追跡します。
看護ノートに重要な情報を要約することは、臨床医が患者の状態を素早く理解するのに役立ちます。
しかし, 臨床環境における既存の要約法, 特に抽象的手法は, 看護ノートを見落とし, 訓練に基準要約が必要である。
本稿では,QGSummについて紹介する。QGSummは,抽象看護ノート要約のためのクエリ誘導型自己教師型ドメイン適応手法である。
本手法は、患者関連臨床クエリーをガイダンスに使用することにより、トレーニングに基準要約を必要としない。
専門医による自動実験と手作業による評価を通じて,看護ノート要約のためのアプローチおよびその他の最先端の大規模言語モデル(LLM)について検討した。
私たちの実験は以下のとおりです。
1)GPT-4は、元の看護ノートの情報を維持するのに競争力がある。
2) QGSummは, オリジナルコンテンツのリコールと幻覚率のバランスのよい高品質な要約を生成することができる。
最終的に、我々の研究は、臨床応用に適した条件付きテキスト要約の新しい視点を提供する。
関連論文リスト
- Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
大言語モデル(LLM)を用いた臨床ノート作成分野への3つの重要な貢献について述べる。
まず、CliniKnoteを紹介します。CliniKnoteは、1200の複雑な医師と患者との会話と、その全臨床ノートを組み合わせたデータセットです。
第2に,従来のSOAPcitepodder20soap(Subjective, Objective, Assessment, Plan)のメモを上位にキーワードセクションを追加することで,必須情報の迅速な識別を可能にするK-SOAPを提案する。
第3に、医師と患者との会話からK-SOAPノートを生成する自動パイプラインを開発し、様々な近代LCMをベンチマークする。
論文 参考訳(メタデータ) (2024-08-26T18:39:31Z) - Conceptualizing Machine Learning for Dynamic Information Retrieval of
Electronic Health Record Notes [6.1656026560972]
本研究は、特定の臨床コンテキストにおける注記関連性の監督源として、機械学習におけるEHR監査ログの使用を概念化したものである。
本手法は,個々のノート作成セッションでどのノートが読み込まれるかを予測するために0.963のAUCを実現できることを示す。
論文 参考訳(メタデータ) (2023-08-09T21:04:19Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Generating medically-accurate summaries of patient-provider dialogue: A
multi-stage approach using large language models [6.252236971703546]
効果的な要約は、対話におけるすべての医学的関連情報を一貫性と精度良く捉えることが要求される。
本稿では, 医療会話の要約問題に, タスクを, より小さな対話に基づくタスクに分解することで対処する。
論文 参考訳(メタデータ) (2023-05-10T08:48:53Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Discharge Summary Hospital Course Summarisation of In Patient Electronic
Health Record Text with Clinical Concept Guided Deep Pre-Trained Transformer
Models [1.1393603788068778]
ブリーフ病院コース(英: Brief Hospital Course、略称:BHC)は、病院全体の出会いの簡潔なサマリーであり、退院サマリーに埋め込まれている。
深層学習要約モデルの性能を実証するBHC要約法について述べる。
論文 参考訳(メタデータ) (2022-11-14T05:39:45Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Summarizing Patients Problems from Hospital Progress Notes Using
Pre-trained Sequence-to-Sequence Models [9.879960506853145]
問題リストの要約には、臨床文書を理解し、抽象化し、生成するモデルが必要である。
当科では,入院時に提供者の進捗記録からの入力を用いて,患者の日常診療計画における問題点のリストを作成することを目的とした,新たなNLPタスクを提案する。
論文 参考訳(メタデータ) (2022-08-17T17:07:35Z) - Human Evaluation and Correlation with Automatic Metrics in Consultation
Note Generation [56.25869366777579]
近年,機械学習モデルによる臨床相談ノートの作成が急速に進んでいる。
5人の臨床医が57件のモック・コンサルテーションを聴き、自作のノートを書き、自動的に生成されたノートを編集し、全てのエラーを抽出する、広範囲にわたる人的評価研究を行った。
単純な文字ベースのLevenshtein距離測定は、BertScoreのような一般的なモデルベースの測定値に比較して、同等に動作します。
論文 参考訳(メタデータ) (2022-04-01T14:04:16Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。