Quantum subspace expansion approach for simulating dynamical response functions of Kitaev spin liquids
- URL: http://arxiv.org/abs/2407.04205v1
- Date: Fri, 5 Jul 2024 01:09:18 GMT
- Title: Quantum subspace expansion approach for simulating dynamical response functions of Kitaev spin liquids
- Authors: Chukwudubem Umeano, François Jamet, Lachlan P. Lindoy, Ivan Rungger, Oleksandr Kyriienko,
- Abstract summary: We develop a quantum simulation-based approach for studying properties of strongly correlated magnetic materials at increasing scale.
We consider a paradigmatic example of a quantum spin liquid (QSL) state hosted by the honeycomb Kitaev model, and use a trainable symmetry-guided ansatz for preparing its ground state.
- Score: 14.379311972506791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a quantum simulation-based approach for studying properties of strongly correlated magnetic materials at increasing scale. We consider a paradigmatic example of a quantum spin liquid (QSL) state hosted by the honeycomb Kitaev model, and use a trainable symmetry-guided ansatz for preparing its ground state. Applying the tools of quantum subspace expansion (QSE), Hamiltonian operator approximation, and overlap measurements, we simulate the QSL at zero temperature and finite magnetic field, thus moving outside of the symmetric subspace. Next, we implement a protocol for quantum subspace expansion-based measurement of spin-spin correlation functions. Finally, we perform QSE-based simulation of the dynamical structure factor obtained from Green's functions of the finite field Kitaev model. Our results show that quantum simulators offer an insight to quasiparticle properties of strongly correlated magnets and can become a valuable tool for studying material science.
Related papers
- Simulating the Fermi-Hubbard model with long-range hopping on a quantum computer [0.0]
We provide quantum circuits to perform ground and excited states calculations.
We benchmark our approach on a chain with L=6 sites and periodic boundary conditions.
arXiv Detail & Related papers (2024-10-10T10:19:02Z) - Truncated Gaussian basis approach for simulating many-body dynamics [0.0]
The approach constructs an effective Hamiltonian within a reduced subspace, spanned by fermionic Gaussian states, and diagonalizes it to obtain approximate eigenstates and eigenenergies.
Symmetries can be exploited to perform parallel computation, enabling to simulate systems with much larger sizes.
For quench dynamics we observe that time-evolving wave functions in the truncated subspace facilitates the simulation of long-time dynamics.
arXiv Detail & Related papers (2024-10-05T15:47:01Z) - Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Programmable Simulations of Molecules and Materials with Reconfigurable
Quantum Processors [0.3320294284424914]
We introduce a simulation framework for strongly correlated quantum systems that can be represented by model spin Hamiltonians.
Our approach leverages reconfigurable qubit architectures to programmably simulate real-time dynamics.
We show how this method can be used to compute key properties of a polynuclear transition-metal catalyst and 2D magnetic materials.
arXiv Detail & Related papers (2023-12-04T19:00:01Z) - Improved precision scaling for simulating coupled quantum-classical
dynamics [0.17126708168238122]
We present a super-polynomial improvement in the precision scaling of quantum simulations for coupled classical-quantum systems.
By employing a framework based on the Koopman-von Neumann formalism, we express the Liouville equation of motion as unitary dynamics.
We demonstrate that these simulations can be performed in both microcanonical and canonical ensembles.
arXiv Detail & Related papers (2023-07-24T18:00:03Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.