Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization
- URL: http://arxiv.org/abs/2407.04245v1
- Date: Fri, 5 Jul 2024 04:14:50 GMT
- Title: Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization
- Authors: Ming-Yang Ho, Che-Ming Wu, Min-Sheng Wu, Yufeng Jane Tseng,
- Abstract summary: We introduce a Dense Normalization layer designed to estimate pixel-level statistical moments.
This approach effectively diminishes tiling artifacts while concurrently preserving local color and hue contrasts.
Our work paves the way for future exploration in handling images of arbitrary resolutions within the realm of unpaired image-to-image translation.
- Score: 4.349838917565205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in ultra-high-resolution unpaired image-to-image translation have aimed to mitigate the constraints imposed by limited GPU memory through patch-wise inference. Nonetheless, existing methods often compromise between the reduction of noticeable tiling artifacts and the preservation of color and hue contrast, attributed to the reliance on global image- or patch-level statistics in the instance normalization layers. In this study, we introduce a Dense Normalization (DN) layer designed to estimate pixel-level statistical moments. This approach effectively diminishes tiling artifacts while concurrently preserving local color and hue contrasts. To address the computational demands of pixel-level estimation, we further propose an efficient interpolation algorithm. Moreover, we invent a parallelism strategy that enables the DN layer to operate in a single pass. Through extensive experiments, we demonstrate that our method surpasses all existing approaches in performance. Notably, our DN layer is hyperparameter-free and can be seamlessly integrated into most unpaired image-to-image translation frameworks without necessitating retraining. Overall, our work paves the way for future exploration in handling images of arbitrary resolutions within the realm of unpaired image-to-image translation. Code is available at: https://github.com/Kaminyou/Dense-Normalization.
Related papers
- Multi-Feature Aggregation in Diffusion Models for Enhanced Face Super-Resolution [6.055006354743854]
We develop an algorithm that utilize a low-resolution image combined with features extracted from multiple low-quality images to generate a super-resolved image.
Unlike other algorithms, our approach recovers facial features without explicitly providing attribute information.
This is the first time multi-features combined with low-resolution images are used as conditioners to generate more reliable super-resolution images.
arXiv Detail & Related papers (2024-08-27T20:08:33Z) - VDIP-TGV: Blind Image Deconvolution via Variational Deep Image Prior
Empowered by Total Generalized Variation [21.291149526862416]
Deep image prior (DIP) proposes to use the deep network as a regularizer for a single image rather than as a supervised model.
In this paper, we combine total generalized variational (TGV) regularization with VDIP to overcome these shortcomings.
The proposed VDIP-TGV effectively recovers image edges and details by supplementing extra gradient information through TGV.
arXiv Detail & Related papers (2023-10-30T12:03:18Z) - Dense Pixel-to-Pixel Harmonization via Continuous Image Representation [22.984119094424056]
We propose a novel image Harmonization method based on Implicit neural Networks (HINet)
Inspired by the Retinex theory, we decouple the harmonizations into two parts to respectively capture the content and environment of composite images.
Extensive experiments have demonstrated the effectiveness of our method compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-03T02:52:28Z) - Smooth image-to-image translations with latent space interpolations [64.8170758294427]
Multi-domain image-to-image (I2I) translations can transform a source image according to the style of a target domain.
We show that our regularization techniques can improve the state-of-the-art I2I translations by a large margin.
arXiv Detail & Related papers (2022-10-03T11:57:30Z) - Deep Generalized Unfolding Networks for Image Restoration [16.943609020362395]
We propose a Deep Generalized Unfolding Network (DGUNet) for image restoration.
We integrate a gradient estimation strategy into the gradient descent step of the Proximal Gradient Descent (PGD) algorithm.
Our method is superior in terms of state-of-the-art performance, interpretability, and generalizability.
arXiv Detail & Related papers (2022-04-28T08:39:39Z) - Learning Weighting Map for Bit-Depth Expansion within a Rational Range [64.15915577164894]
Bit-depth expansion (BDE) is one of the emerging technologies to display high bit-depth (HBD) image from low bit-depth (LBD) source.
Existing BDE methods have no unified solution for various BDE situations.
We design a bit restoration network (BRNet) to learn a weight for each pixel, which indicates the ratio of the replenished value within a rational range.
arXiv Detail & Related papers (2022-04-26T02:27:39Z) - The Spatially-Correlative Loss for Various Image Translation Tasks [69.62228639870114]
We propose a novel spatially-correlative loss that is simple, efficient and yet effective for preserving scene structure consistency.
Previous methods attempt this by using pixel-level cycle-consistency or feature-level matching losses.
We show distinct improvement over baseline models in all three modes of unpaired I2I translation: single-modal, multi-modal, and even single-image translation.
arXiv Detail & Related papers (2021-04-02T02:13:30Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.