論文の概要: AI-Based Beam-Level and Cell-Level Mobility Management for High Speed Railway Communications
- arxiv url: http://arxiv.org/abs/2407.04336v1
- Date: Fri, 5 Jul 2024 08:23:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:09:46.665701
- Title: AI-Based Beam-Level and Cell-Level Mobility Management for High Speed Railway Communications
- Title(参考訳): 高速鉄道通信におけるAIベースビームレベルとセルレベルモビリティ管理
- Authors: Wen Li, Wei Chen, Shiyue Wang, Yuanyuan Zhang, Michail Matthaiou, Bo Ai,
- Abstract要約: 高速鉄道(英語版) (HSR) の通信は、鉄道安全、運行、保守、旅客情報の提供を確実にするために重要である。
我々は,HSR通信に適したAIベースのビームレベルとセルレベルのモビリティ管理について検討する。
- 参考スコア(独自算出の注目度): 38.57231496000491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-speed railway (HSR) communications are pivotal for ensuring rail safety, operations, maintenance, and delivering passenger information services. The high speed of trains creates rapidly time-varying wireless channels, increases the signaling overhead, and reduces the system throughput, making it difficult to meet the growing and stringent needs of HSR applications. In this article, we explore artificial intelligence (AI)-based beam-level and cell-level mobility management suitable for HSR communications, including the use cases, inputs, outputs, and key performance indicators (KPI)s of AI models. Particularly, in comparison to traditional down-sampling spatial beam measurements, we show that the compressed spatial multi-beam measurements via compressive sensing lead to improved spatial-temporal beam prediction. Moreover, we demonstrate the performance gains of AI-assisted cell handover over traditional mobile handover mechanisms. In addition, we observe that the proposed approaches to reduce the measurement overhead achieve comparable radio link failure performance with the traditional approach that requires all the beam measurements of all cells, while the former methods can save 50% beam measurement overhead.
- Abstract(参考訳): 高速鉄道(英語版) (HSR) の通信は、鉄道安全、運行、保守、旅客情報の提供を確実にするために重要である。
高速列車は、高速で時間変化の速い無線チャネルを生成し、信号のオーバーヘッドを増大させ、システムのスループットを低下させ、HSRアプリケーションの成長と厳しいニーズを満たすのが困難になる。
本稿では、AIモデルのユースケース、入力、出力、キーパフォーマンス指標(KPI)を含む、HSR通信に適したAIベースのビームレベルおよびセルレベルモビリティ管理について検討する。
特に、従来のダウンサンプリング型空間ビーム測定と比較して、圧縮センシングによる圧縮空間マルチビーム測定が空間時空間ビーム予測の改善につながることを示す。
さらに,従来の移動体ハンドオーバ機構に対するAI支援セルハンドオーバの性能向上を示す。
さらに, 従来手法では全セルのビーム計測を全て必要としていたが, 従来手法では50%のビーム計測オーバーヘッドを削減できた。
関連論文リスト
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - Integrated Sensing and Communications for Low-Altitude Economy: A Deep Reinforcement Learning Approach [20.36806314683902]
低高度経済(LAE)のための統合センシング・通信(ISAC)システムについて検討する。
所定の飛行期間における通信総和レートは、GBSとUAVの軌道でのビームフォーミングを共同最適化することにより最大化する。
本稿では, 深部強化学習(DRL)技術を活用して, 深部LAE-ISAC(Deep LAE-ISAC)と呼ばれる新しいLEE指向ISAC方式を提案する。
論文 参考訳(メタデータ) (2024-12-05T11:12:46Z) - Latency Optimization in LEO Satellite Communications with Hybrid Beam Pattern and Interference Control [20.19239663262141]
低軌道(LEO)衛星通信システムは次世代用途に不可欠な高容量で低遅延のサービスを提供する。
LEO星座の密な構成は資源配分最適化と干渉管理の課題を提起する。
本稿では,マルチビームLEOシステムにおけるビームスケジューリングとリソース割り当てを最適化するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T17:18:24Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
ローアース・オービット(LEO)衛星星座は近年、急速に展開している。
このような応用に機械学習(ML)を適用するには、画像などの衛星データを地上局(GS)にダウンロードする従来の方法は望ましいものではない。
既存のFLソリューションは、過剰収束遅延や信頼できない無線チャネルといった大きな課題のために、そのようなLEOコンステレーションのシナリオには適さないことを示す。
論文 参考訳(メタデータ) (2022-05-15T08:22:52Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
通信可能な屋内知的ロボット(IR)サービスフレームワークを提案する。
室内レイアウトとチャネル状態を決定論的に記述できるレゴモデリング手法が提案されている。
調査対象の無線マップは、強化学習エージェントを訓練するための仮想環境として呼び出される。
論文 参考訳(メタデータ) (2020-11-23T21:45:01Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
無人航空機(UAV)搭載のインテリジェントリフレクタ(IR)を用いた新しい通信フレームワークを提案する。
ダウンリンク和率を最大化するために、最適プリコーディング行列(基地局)と反射係数(IR)を共同で導出する。
論文 参考訳(メタデータ) (2020-11-03T16:50:37Z) - Hybrid Beamforming for RIS-Empowered Multi-hop Terahertz Communications:
A DRL-based Method [43.95403787396996]
TeraHertzバンド(0.1-10 THz)における無線通信は、将来の6世代(6G)無線通信システムにおいて重要な技術のひとつとして想定されている。
本稿では,マルチホップRIS支援通信ネットワークのための新しいハイブリッドビームフォーミング方式を提案する。
論文 参考訳(メタデータ) (2020-09-20T07:51:49Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。