論文の概要: AI-Based Beam-Level and Cell-Level Mobility Management for High Speed Railway Communications
- arxiv url: http://arxiv.org/abs/2407.04336v1
- Date: Fri, 5 Jul 2024 08:23:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-08 14:09:46.665701
- Title: AI-Based Beam-Level and Cell-Level Mobility Management for High Speed Railway Communications
- Title(参考訳): 高速鉄道通信におけるAIベースビームレベルとセルレベルモビリティ管理
- Authors: Wen Li, Wei Chen, Shiyue Wang, Yuanyuan Zhang, Michail Matthaiou, Bo Ai,
- Abstract要約: 高速鉄道(英語版) (HSR) の通信は、鉄道安全、運行、保守、旅客情報の提供を確実にするために重要である。
我々は,HSR通信に適したAIベースのビームレベルとセルレベルのモビリティ管理について検討する。
- 参考スコア(独自算出の注目度): 38.57231496000491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-speed railway (HSR) communications are pivotal for ensuring rail safety, operations, maintenance, and delivering passenger information services. The high speed of trains creates rapidly time-varying wireless channels, increases the signaling overhead, and reduces the system throughput, making it difficult to meet the growing and stringent needs of HSR applications. In this article, we explore artificial intelligence (AI)-based beam-level and cell-level mobility management suitable for HSR communications, including the use cases, inputs, outputs, and key performance indicators (KPI)s of AI models. Particularly, in comparison to traditional down-sampling spatial beam measurements, we show that the compressed spatial multi-beam measurements via compressive sensing lead to improved spatial-temporal beam prediction. Moreover, we demonstrate the performance gains of AI-assisted cell handover over traditional mobile handover mechanisms. In addition, we observe that the proposed approaches to reduce the measurement overhead achieve comparable radio link failure performance with the traditional approach that requires all the beam measurements of all cells, while the former methods can save 50% beam measurement overhead.
- Abstract(参考訳): 高速鉄道(英語版) (HSR) の通信は、鉄道安全、運行、保守、旅客情報の提供を確実にするために重要である。
高速列車は、高速で時間変化の速い無線チャネルを生成し、信号のオーバーヘッドを増大させ、システムのスループットを低下させ、HSRアプリケーションの成長と厳しいニーズを満たすのが困難になる。
本稿では、AIモデルのユースケース、入力、出力、キーパフォーマンス指標(KPI)を含む、HSR通信に適したAIベースのビームレベルおよびセルレベルモビリティ管理について検討する。
特に、従来のダウンサンプリング型空間ビーム測定と比較して、圧縮センシングによる圧縮空間マルチビーム測定が空間時空間ビーム予測の改善につながることを示す。
さらに,従来の移動体ハンドオーバ機構に対するAI支援セルハンドオーバの性能向上を示す。
さらに, 従来手法では全セルのビーム計測を全て必要としていたが, 従来手法では50%のビーム計測オーバーヘッドを削減できた。
関連論文リスト
- Handover and SINR-Aware Path Optimization in 5G-UAV mmWave Communication using DRL [0.5315148938765306]
UAV支援5G mmWave無線ネットワークにおける経路最適化のための新しいモデルフリーアクタ・アクタ・クリティック・ディープ・強化学習(AC-DRL)フレームワークを提案する。
我々は、gNBに接続されたUAVが最短時間で所望の目的地への最適な経路を決定することができるAC-RLエージェントを訓練する。
論文 参考訳(メタデータ) (2025-04-03T15:28:04Z) - Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - Latency Optimization in LEO Satellite Communications with Hybrid Beam Pattern and Interference Control [20.19239663262141]
低軌道(LEO)衛星通信システムは次世代用途に不可欠な高容量で低遅延のサービスを提供する。
LEO星座の密な構成は資源配分最適化と干渉管理の課題を提起する。
本稿では,マルチビームLEOシステムにおけるビームスケジューリングとリソース割り当てを最適化するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T17:18:24Z) - Causality-Driven Reinforcement Learning for Joint Communication and Sensing [4.165335263540595]
我々は,mMIMOベースのJCAS環境に対する因果関係を介入し,発見することができる因果関係認識型RLエージェントを提案する。
我々は、RLに基づくJCASの因果発見を実現するために、状態依存行動次元選択戦略を用いる。
論文 参考訳(メタデータ) (2024-09-07T07:15:57Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Beam Prediction based on Large Language Models [51.45077318268427]
ミリ波(mmWave)通信は次世代無線ネットワークに期待できるが、パス損失は大きい。
長短期記憶(LSTM)のような従来のディープラーニングモデルでは、ビーム追跡精度が向上するが、ロバスト性や一般化が不足している。
本稿では,大規模言語モデル(LLM)を用いて,ビーム予測の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-08-16T12:40:01Z) - Predictive Handover Strategy in 6G and Beyond: A Deep and Transfer Learning Approach [11.44410301488549]
本稿では,将来的なサービスセル予測のためのディープラーニングに基づくアルゴリズムを提案する。
我々のフレームワークはO-RAN仕様に準拠しており、Near-Real-Time RAN Intelligent Controllerにデプロイできます。
論文 参考訳(メタデータ) (2024-04-11T20:30:36Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
ローアース・オービット(LEO)衛星星座は近年、急速に展開している。
このような応用に機械学習(ML)を適用するには、画像などの衛星データを地上局(GS)にダウンロードする従来の方法は望ましいものではない。
既存のFLソリューションは、過剰収束遅延や信頼できない無線チャネルといった大きな課題のために、そのようなLEOコンステレーションのシナリオには適さないことを示す。
論文 参考訳(メタデータ) (2022-05-15T08:22:52Z) - Network Level Spatial Temporal Traffic State Forecasting with Hierarchical Attention LSTM (HierAttnLSTM) [0.0]
本稿では,オープンベンチマークにホストされたPeMS(Caltrans Performance Measurement System)から,多様なトラフィック状態データセットを活用する。
我々は,低レベルから高レベルLong Short-Term Memory (LSTM) ネットワーク間のセルおよび隠れ状態とアテンションプーリング機構を統合した。
構築された階層構造は、ネットワークレベルのトラフィック状態の空間的時間的相関をキャプチャして、異なる時間スケールにまたがる依存関係を考慮に入れられるように設計されている。
論文 参考訳(メタデータ) (2022-01-15T05:25:03Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Terahertz-Band Joint Ultra-Massive MIMO Radar-Communications:
Model-Based and Model-Free Hybrid Beamforming [45.257328085051974]
テラヘルツ(THz)バンドにおける無線通信とセンシングを,有望な短距離技術として検討した。
THz通信では、伝搬損失を補償する超大質量マルチ入力マルチ出力(UM-MIMO)アンテナシステムが提案されています。
我々は,新しいgroup-of-subarrays (gosa) um-mimo構造のためのモデルベースおよびモデルフリー技術に基づくthzハイブリッドビームフォーマを開発した。
論文 参考訳(メタデータ) (2021-02-27T21:28:34Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
通信可能な屋内知的ロボット(IR)サービスフレームワークを提案する。
室内レイアウトとチャネル状態を決定論的に記述できるレゴモデリング手法が提案されている。
調査対象の無線マップは、強化学習エージェントを訓練するための仮想環境として呼び出される。
論文 参考訳(メタデータ) (2020-11-23T21:45:01Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
無人航空機(UAV)搭載のインテリジェントリフレクタ(IR)を用いた新しい通信フレームワークを提案する。
ダウンリンク和率を最大化するために、最適プリコーディング行列(基地局)と反射係数(IR)を共同で導出する。
論文 参考訳(メタデータ) (2020-11-03T16:50:37Z) - Hybrid Beamforming for RIS-Empowered Multi-hop Terahertz Communications:
A DRL-based Method [43.95403787396996]
TeraHertzバンド(0.1-10 THz)における無線通信は、将来の6世代(6G)無線通信システムにおいて重要な技術のひとつとして想定されている。
本稿では,マルチホップRIS支援通信ネットワークのための新しいハイブリッドビームフォーミング方式を提案する。
論文 参考訳(メタデータ) (2020-09-20T07:51:49Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。