論文の概要: FunOTTA: On-the-Fly Adaptation on Cross-Domain Fundus Image via Stable Test-time Training
- arxiv url: http://arxiv.org/abs/2407.04396v3
- Date: Fri, 07 Nov 2025 03:28:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 21:00:44.469752
- Title: FunOTTA: On-the-Fly Adaptation on Cross-Domain Fundus Image via Stable Test-time Training
- Title(参考訳): FunOTTA: 安定テストタイムトレーニングによるクロスドメインファンドイメージのオンザフライ適応
- Authors: Qian Zeng, Le Zhang, Yipeng Liu, Ce Zhu, Fan Zhang,
- Abstract要約: 本研究では,FunOTTA(Fundus On-the-fly Test-Time Adaptation)フレームワークを提案する。
FunOTTAは、有害な事前知識バイアスを最小限に抑えつつ、メモリバンク内でダイナミックな曖昧さを実行することで、安定した適応プロセスにおいて際立っている。
2つの疾患にまたがるクロスドメイン・ファンドス画像ベンチマークの実験は、全体的なフレームワークの優位性を示している。
- 参考スコア(独自算出の注目度): 40.728092407170756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fundus images are essential for the early screening and detection of eye diseases. While deep learning models using fundus images have significantly advanced the diagnosis of multiple eye diseases, variations in images from different imaging devices and locations (known as domain shifts) pose challenges for deploying pre-trained models in real-world applications. To address this, we propose a novel Fundus On-the-fly Test-Time Adaptation (FunOTTA) framework that effectively generalizes a fundus image diagnosis model to unseen environments, even under strong domain shifts. FunOTTA stands out for its stable adaptation process by performing dynamic disambiguation in the memory bank while minimizing harmful prior knowledge bias. We also introduce a new training objective during adaptation that enables the classifier to incrementally adapt to target patterns with reliable class conditional estimation and consistency regularization. We compare our method with several state-of-the-art test-time adaptation (TTA) pipelines. Experiments on cross-domain fundus image benchmarks across two diseases demonstrate the superiority of the overall framework and individual components under different backbone networks. Code is available at https://github.com/Casperqian/FunOTTA.
- Abstract(参考訳): 眼疾患の早期スクリーニングと検出には、眼底画像が不可欠である。
眼底画像を用いたディープラーニングモデルは、複数の眼疾患の診断を大幅に進歩させているが、異なる画像デバイスや場所(ドメインシフトとして知られる)からのイメージの変化は、実世界のアプリケーションに事前訓練されたモデルをデプロイする上での課題となっている。
そこで本研究では,FunOTTA(Fundus On-the-fly Test-Time Adaptation)フレームワークを提案する。
FunOTTAは、有害な事前知識バイアスを最小限に抑えつつ、メモリバンク内でダイナミックな曖昧さを実行することで、安定した適応プロセスにおいて際立っている。
また,適応中の新たなトレーニング目標も導入し,クラス条件推定と整合性正規化による目標パターンへの漸進的適応を可能にする。
提案手法を,最先端テスト時間適応(TTA)パイプラインと比較した。
2つの疾患にまたがるクロスドメイン・ファンドス画像ベンチマークの実験は、異なるバックボーンネットワーク下でのフレームワークと個々のコンポーネント全体の優位性を実証している。
コードはhttps://github.com/Casperqian/FunOTTAで入手できる。
関連論文リスト
- Enhancing Fundus Image-based Glaucoma Screening via Dynamic Global-Local Feature Integration [26.715346685730484]
特徴抽出のための最適境界を自律的に決定する自己適応型注意窓を提案する。
また,グローバルな特徴とローカルな特徴を,特徴線形読み出しによって効果的に融合するマルチヘッドアテンション機構を導入する。
緑内障の分類において,本手法が優れた精度とロバスト性を実現することを示す実験結果が得られた。
論文 参考訳(メタデータ) (2025-04-01T05:28:14Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures [1.6000489723889526]
糖尿病網膜症や緑内障などの眼疾患は、公衆衛生上の重大な課題となる。
深層学習モデルは、網膜イメージングのような医療画像を分析する強力なツールとして登場した。
課題は、モデル適合性と不確実性の推定であり、これは臨床的な意思決定に不可欠である。
論文 参考訳(メタデータ) (2024-01-21T04:14:54Z) - Generative Adversarial Networks for Stain Normalisation in
Histopathology [2.2166690647926037]
現在の研究における重要な障害の1つは、デジタル病理画像間の高レベルの視覚的変動である。
Sten normalization は、画像の構造的内容を変更することなく、デジタル病理画像の視覚的プロファイルを標準化することを目的としている。
研究者は、病理画像を効率的に正規化し、AIモデルをより堅牢で一般化可能にする方法を見つけることを目的としている。
論文 参考訳(メタデータ) (2023-08-05T11:38:05Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - RADNet: Ensemble Model for Robust Glaucoma Classification in Color
Fundus Images [0.0]
緑内障は最も重篤な眼疾患の1つで、急激な進行と不可逆性失明を特徴とする。
集団の正常な緑内障検診では早期発見が改善するが,病原性チェックアップの望ましい頻度は期待できないことが多い。
本研究では,高度な画像前処理手法と深層分類ネットワークのアンサンブルを併用した画像前処理手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T16:48:00Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
我々は網膜血管画像再構成に基づく新しい自己教師型タスクを定義することで、不変なターゲットドメインの特徴を学習する。
私たちのアプローチは既存のドメイン戦略よりも優れています。
論文 参考訳(メタデータ) (2021-07-20T09:44:07Z) - Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using
Tailored Prototypical Neural Networks [1.1601676598120785]
緑内障は世界の視覚障害の主要な原因の1つである。
生の毛細血管Bスキャンを用いて緑内障を診断する新しい枠組みを初めて提案する。
特に,手動学習と深層学習を組み合わせた新しいOCTベースのハイブリッドネットワークを構築した。
論文 参考訳(メタデータ) (2021-06-25T10:53:01Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
そこで本研究では,前立腺癌(PCa)の完全分類のための畳み込みニューラルネットワーク(CNN)を用いた自動分類法を提案する。
Patch-Based Image Reconstruction (PBIR) と呼ばれるデータ拡張手法が提案され,WSIの高分解能化と多様性の向上が図られた。
対象データセットへの事前学習モデルの適応性を高めるために,分布補正モジュールを開発した。
論文 参考訳(メタデータ) (2020-11-29T06:42:08Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。