論文の概要: Approximating under the Influence of Quantum Noise and Compute Power
- arxiv url: http://arxiv.org/abs/2408.02287v1
- Date: Mon, 5 Aug 2024 07:48:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:16:18.633142
- Title: Approximating under the Influence of Quantum Noise and Compute Power
- Title(参考訳): 量子ノイズとコンピュータパワーによる近似
- Authors: Simon Thelen, Hila Safi, Wolfgang Mauerer,
- Abstract要約: 量子近似最適化アルゴリズム(QAOA)は、量子コンピュータのパワーと古典的な高性能コンピューティングアプライアンスを組み合わせて最適化することを目的とした多くのシナリオの中核である。
総合密度行列に基づくシミュレーションを用いて, 4種類のQAOA変異体の解の質と時間的挙動に影響を与える因子について検討した。
本研究の結果は, 包括的複製パッケージを伴い, 狭小かつ特異な影響を指摘できるQAOA変異体との違いが強く認められた。
- 参考スコア(独自算出の注目度): 3.0302054726041017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum approximate optimisation algorithm (QAOA) is at the core of many scenarios that aim to combine the power of quantum computers and classical high-performance computing appliances for combinatorial optimisation. Several obstacles challenge concrete benefits now and in the foreseeable future: Imperfections quickly degrade algorithmic performance below practical utility; overheads arising from alternating between classical and quantum primitives can counter any advantage; and the choice of parameters or algorithmic variant can substantially influence runtime and result quality. Selecting the optimal combination is a non-trivial issue, as it not only depends on user requirements, but also on details of the hardware and software stack. Appropriate automation can lift the burden of choosing optimal combinations for end-users: They should not be required to understand technicalities like differences between QAOA variants, required number of QAOA layers, or necessary measurement samples. Yet, they should receive best-possible satisfaction of their non-functional requirements, be it performance or other. We determine factors that affect solution quality and temporal behaviour of four QAOA variants using comprehensive density-matrix-based simulations targeting three widely studied optimisation problems. Our simulations consider ideal quantum computation, and a continuum of scenarios troubled by realistic imperfections. Our quantitative results, accompanied by a comprehensive reproduction package, show strong differences between QAOA variants that can be pinpointed to narrow and specific effects. We identify influential co-variables and relevant non-functional quality goals that, we argue, mark the relevant ingredients for designing appropriate software engineering abstraction mechanisms and automated tool-chains for devising quantum solutions from high-level problem specifications.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、量子コンピュータのパワーと、組合せ最適化のための古典的な高性能コンピューティングアプライアンスを組み合わせることを目的とした多くのシナリオの中核である。
不完全性は実用性よりも早くアルゴリズム性能を劣化させ、古典的プリミティブと量子的プリミティブの交互化に起因するオーバーヘッドは、いかなる利点にも対抗できる。
最適な組み合わせを選択することは、ユーザの要求だけでなく、ハードウェアやソフトウェアスタックの詳細にも依存するため、非常に簡単な問題である。
適切な自動化は、エンドユーザに最適な組み合わせを選択するという負担を軽減します。 QAOAの変種の違い、必要なQAOA層数、必要な測定サンプルなど、技術的に理解する必要がありません。
しかし、パフォーマンスなど、機能しない要求に対して最高の満足感を得るべきです。
3つの広く研究されている最適化問題を対象とした包括的密度行列に基づくシミュレーションを用いて,QAOA変異体の解の質と時間的挙動に影響を与える因子を決定する。
シミュレーションでは、理想的な量子計算と、現実的な不完全性に悩まされるシナリオの連続性を考慮する。
本報告では, 包括的複製パッケージを伴い, 狭小かつ特異な影響を指摘できるQAOA変異体との違いを強く示している。
我々は、適切なソフトウェア工学の抽象化メカニズムと高レベルの問題仕様から量子ソリューションを考案するための自動化ツールチェーンを設計するための関連する要素をマークする、影響力のある共変量と関連する非機能品質目標を特定します。
関連論文リスト
- Connecting the Hamiltonian structure to the QAOA performance and energy landscape [0.0]
量子交互演算子 Ansatz (QAOA) は2次非制約二項最適化問題の解法に有効である。
本研究は,短期量子デバイスにおけるアルゴリズムの堅牢性と最適化タスクの可能性を強調する。
論文 参考訳(メタデータ) (2024-07-05T11:32:46Z) - Solving Combinatorial Optimization Problems with a Block Encoding Quantum Optimizer [0.0]
Block ENcoding Quantum (BEQO) は、ブロック符号化を用いてコスト関数を表現するハイブリッド量子ソルバである。
以上の結果から,BENQOはQAOAよりも有意に優れた性能を示し,VQEと各種のパフォーマンス指標を比較検討した。
論文 参考訳(メタデータ) (2024-04-22T10:10:29Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Benchmarking Metaheuristic-Integrated QAOA against Quantum Annealing [0.0]
この研究は、異なる問題領域にわたる量子アニーリングとメタヒューリスティック統合QAOAの長所と短所に関する洞察を提供する。
その結果,ハイブリッド手法は古典的最適化手法を利用してQAOAの解品質と収束速度を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-09-28T18:55:22Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
我々は、キャパシタントカー問題(CVRP)またはその減量版であるトラベリングセールスパーソン問題(TSP)について議論する。
今日の最も強力な古典的アルゴリズムでさえ、CVRPは古典的解決が難しい。
量子コンピューティングは、ソリューションの時間を改善する手段を提供するかもしれない。
論文 参考訳(メタデータ) (2023-04-19T13:03:50Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
制約付き最適化問題を解くためのフェルミオン量子近似最適化アルゴリズム(FQAOA)を提案する。
FQAOAは、フェルミオン粒子数保存を用いて、QAOAを通して本質的にそれらを強制する制約問題に対処する。
制約付きハミルトニアン問題に対して、運転者ハミルトニアンを設計するための体系的なガイドラインを提供する。
論文 参考訳(メタデータ) (2023-01-25T18:36:58Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。