論文の概要: Enhancing Vehicle Re-identification and Matching for Weaving Analysis
- arxiv url: http://arxiv.org/abs/2407.04688v1
- Date: Fri, 5 Jul 2024 17:50:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 12:31:56.262989
- Title: Enhancing Vehicle Re-identification and Matching for Weaving Analysis
- Title(参考訳): ウィービング解析のための車両再識別とマッチングの強化
- Authors: Mei Qiu, Wei Lin, Stanley Chien, Lauren Christopher, Yaobin Chen, Shu Hu,
- Abstract要約: 高速道路での車両の織りは交通渋滞に寄与し、安全上の問題を提起し、高度な交通管理システムの必要性を浮き彫りにしている。
現在のツールは、レーン固有の織りパターンの正確で包括的なデータを提供するには不十分です。
本稿では, ウィービングゾーンにおける非オーバーラップ映像データを収集する革新的な手法を提案し, レーン固有ウィービング行動に関する定量的洞察を創出する。
- 参考スコア(独自算出の注目度): 12.549381266302959
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Vehicle weaving on highways contributes to traffic congestion, raises safety issues, and underscores the need for sophisticated traffic management systems. Current tools are inadequate in offering precise and comprehensive data on lane-specific weaving patterns. This paper introduces an innovative method for collecting non-overlapping video data in weaving zones, enabling the generation of quantitative insights into lane-specific weaving behaviors. Our experimental results confirm the efficacy of this approach, delivering critical data that can assist transportation authorities in enhancing traffic control and roadway infrastructure.
- Abstract(参考訳): 高速道路での車両の織りは交通渋滞に寄与し、安全上の問題を提起し、高度な交通管理システムの必要性を浮き彫りにしている。
現在のツールは、レーン固有の織りパターンの正確で包括的なデータを提供するには不十分です。
本稿では, ウィービングゾーンにおける非オーバーラップ映像データを収集する革新的な手法を提案し, レーン固有ウィービング行動に関する定量的洞察を創出する。
提案手法の有効性を確認し,交通規制の強化と道路インフラの整備を交通当局に支援するための重要なデータを提供する。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Traffic Reconstruction and Analysis of Natural Driving Behaviors at
Unsignalized Intersections [1.7273380623090846]
この研究は、TNのメンフィスにある様々な無署名の交差点で、その日の異なる時間に交通を記録していた。
ビデオデータを手動でラベル付けして特定の変数をキャプチャした後,SUMOシミュレーション環境におけるトラフィックシナリオを再構築した。
これらのシミュレーションから得られた出力データは、車両移動の時間空間図、走行時間頻度分布、ボトルネック点を特定するための速度配置プロットなど、包括的な分析を提供する。
論文 参考訳(メタデータ) (2023-12-22T09:38:06Z) - Semantic Map Learning of Traffic Light to Lane Assignment based on
Motion Data [12.853720506838043]
自動運転車は通常、車線への信号の割り当てに関する情報を含むHigh Definition (HD)マップに依存している。
これらの問題を解決するために,交通信号の状態と対応する車両交通の動作パターンから課題を導出する。
Lyft Level 5データセット用の公開APIによって、研究者は独自のアプローチを開発し、評価することができます。
論文 参考訳(メタデータ) (2023-09-26T09:42:21Z) - Automatic Extraction of Relevant Road Infrastructure using Connected
vehicle data and Deep Learning Model [4.235459779667272]
本稿では,コネクテッドカーデータと最先端のディープラーニング技術を活用した新しいアプローチを提案する。
道路区間にジオハッシングを施し,道路区間の画像表現を生成することにより,道路区間と交差点の正確な分類にYOLOv5アルゴリズムを用いる。
実験の結果,97%のF1スコア,90%のF1スコアに到達した。
論文 参考訳(メタデータ) (2023-08-10T15:57:47Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
交通シーン構造を考慮したトポロジ推論のための最初のデータセットであるOpenLane-V2を提案する。
OpenLane-V2は2000のアノテートされた道路シーンで構成され、交通要素と車線との関係を記述している。
様々な最先端手法を評価し,OpenLane-V2の定量的,定性的な結果を示し,交通現場におけるトポロジ推論の今後の道筋を示す。
論文 参考訳(メタデータ) (2023-04-20T16:31:22Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
非客観的運転経験はモデル化が難しい。
本稿では,運転経験蓄積過程をモデル化するFeedBack Loop Network (FBLNet)を提案する。
インクリメンタルな知識の指導のもと、私たちのモデルは入力画像から抽出されたCNN特徴とトランスフォーマー特徴を融合し、ドライバーの注意を予測します。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Towards formalization and monitoring of microscopic traffic parameters
using temporal logic [1.3706331473063877]
本稿では,形式言語Signal Temporal Logicを用いた交通ネットワーク解析のための仕様ベースのモニタリング手法を提案する。
我々は、速度制限に適合し、適切な進路を維持するなど、安全関連行動を特定するモニターを開発する。
この作業は交通管理センターがトラヒックストリーム特性を調査し、ハザードを特定し、トラヒック監視システムを自動化する上で貴重なフィードバックを提供するために利用することができる。
論文 参考訳(メタデータ) (2021-10-12T17:59:26Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - A Deep Reinforcement Learning Approach for Ramp Metering Based on
Traffic Video Data [0.0]
交通信号を利用してオンランプからの車両の流れを調節するランプメーターは、高速道路の車両移動性を改善するために広く実装されています。
従来の研究では、ポイント検出器によって収集された事前定義された交通手段に基づいて、信号タイミングをリアルタイムに更新する。
深層補強学習法 (DRL) を提案し, ランプ計測の効率化に資するトラフィックビデオデータの可能性を検討する。
論文 参考訳(メタデータ) (2020-12-09T05:08:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。