BrainMetDetect: Predicting Primary Tumor from Brain Metastasis MRI Data Using Radiomic Features and Machine Learning Algorithms
- URL: http://arxiv.org/abs/2407.05051v1
- Date: Sat, 6 Jul 2024 11:34:00 GMT
- Title: BrainMetDetect: Predicting Primary Tumor from Brain Metastasis MRI Data Using Radiomic Features and Machine Learning Algorithms
- Authors: Hamidreza Sadeghsalehi,
- Abstract summary: Brain metastases (BMs) are common in cancer patients and determining the primary tumor site is crucial for effective treatment.
This study aims to predict the primary tumor site from BM MRI data using radiomic features and advanced machine learning algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: Brain metastases (BMs) are common in cancer patients and determining the primary tumor site is crucial for effective treatment. This study aims to predict the primary tumor site from BM MRI data using radiomic features and advanced machine learning algorithms. Methods: We utilized a comprehensive dataset from Ocana-Tienda et al. (2023) comprising MRI and clinical data from 75 patients with BMs. Radiomic features were extracted from post-contrast T1-weighted MRI sequences. Feature selection was performed using the GINI index, and data normalization was applied to ensure consistent scaling. We developed and evaluated Random Forest and XGBoost classifiers, both with and without hyperparameter optimization using the FOX (Fox optimizer) algorithm. Model interpretability was enhanced using SHAP (SHapley Additive exPlanations) values. Results: The baseline Random Forest model achieved an accuracy of 0.85, which improved to 0.93 with FOX optimization. The XGBoost model showed an initial accuracy of 0.96, increasing to 0.99 after optimization. SHAP analysis revealed the most influential radiomic features contributing to the models' predictions. The FOX-optimized XGBoost model exhibited the best performance with a precision, recall, and F1-score of 0.99. Conclusion: This study demonstrates the effectiveness of using radiomic features and machine learning to predict primary tumor sites from BM MRI data. The FOX optimization algorithm significantly enhanced model performance, and SHAP provided valuable insights into feature importance. These findings highlight the potential of integrating radiomics and machine learning into clinical practice for improved diagnostic accuracy and personalized treatment planning.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling [4.1032659987778315]
The high dimensionality of radiomic feature sets, the variability in radiomic feature types and potentially high computational requirements all underscore the need for an effective method to identify the smallest set of predictive features for a given clinical problem.
We develop a methodology and tools to identify and explain the smallest set of predictive radiomic features.
arXiv Detail & Related papers (2024-07-05T23:14:46Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
Brain tumors are one of the deadliest forms of cancer with a mortality rate of over 80%.
In medical analysis, the manual annotation and segmentation of a brain tumor can be a complicated task.
This paper proposes a region of interest detection algorithm that is implemented during data preprocessing to locate salient features and remove extraneous MRI data.
A fully convolutional autoencoder with soft attention segments the different brain MRIs.
arXiv Detail & Related papers (2023-12-31T20:42:52Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
Brain tumors pose a significant global health challenge due to their high prevalence and mortality rates across all age groups.
This study presents a comprehensive investigation into the use of Convolutional Neural Networks (CNNs) for brain tumor detection using Magnetic Resonance Imaging (MRI) images.
The dataset, consisting of MRI scans from both healthy individuals and patients with brain tumors, was processed and fed into the CNN architecture.
arXiv Detail & Related papers (2023-10-26T18:27:20Z) - An Optimized Ensemble Deep Learning Model For Brain Tumor Classification [3.072340427031969]
Inaccurate identification of brain tumors can significantly diminish life expectancy.
This study introduces an innovative optimization-based deep ensemble approach employing transfer learning (TL) to efficiently classify brain tumors.
Our approach achieves notable accuracy scores, with Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, and GSWO attaining 99.42%, 98.37%, 98.22%, 98.26%, 99.71%, and 99.76% accuracy, respectively.
arXiv Detail & Related papers (2023-05-22T09:08:59Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
Two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task.
The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy.
The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.
arXiv Detail & Related papers (2023-04-18T10:14:45Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
Two-phase deep learning-based framework is proposed to detect and categorize brain tumors in magnetic resonance images (MRIs)
In the first phase, a novel deep boosted features and ensemble classifiers (DBF-EC) scheme is proposed to detect tumor MRI images from healthy individuals effectively.
In the second phase, a new hybrid features fusion-based brain tumor classification approach is proposed, comprised of dynamic-static feature and ML classifier to categorize different tumor types.
arXiv Detail & Related papers (2022-01-14T10:24:47Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.