PAPM: A Physics-aware Proxy Model for Process Systems
- URL: http://arxiv.org/abs/2407.05232v1
- Date: Sun, 7 Jul 2024 02:10:05 GMT
- Title: PAPM: A Physics-aware Proxy Model for Process Systems
- Authors: Pengwei Liu, Zhongkai Hao, Xingyu Ren, Hangjie Yuan, Jiayang Ren, Dong Ni,
- Abstract summary: We introduce a physics-aware proxy model (PAPM) that fully incorporates partial prior physics of process systems.
PAPM notably achieves an average performance improvement of 6.7%, while requiring fewer FLOPs, and just 1% of the parameters compared to the prior leading method.
- Score: 12.94548495044072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of proxy modeling for process systems, traditional data-driven deep learning approaches frequently encounter significant challenges, such as substantial training costs induced by large amounts of data, and limited generalization capabilities. As a promising alternative, physics-aware models incorporate partial physics knowledge to ameliorate these challenges. Although demonstrating efficacy, they fall short in terms of exploration depth and universality. To address these shortcomings, we introduce a physics-aware proxy model (PAPM) that fully incorporates partial prior physics of process systems, which includes multiple input conditions and the general form of conservation relations, resulting in better out-of-sample generalization. Additionally, PAPM contains a holistic temporal-spatial stepping module for flexible adaptation across various process systems. Through systematic comparisons with state-of-the-art pure data-driven and physics-aware models across five two-dimensional benchmarks in nine generalization tasks, PAPM notably achieves an average performance improvement of 6.7%, while requiring fewer FLOPs, and just 1% of the parameters compared to the prior leading method. The code is available at https://github.com/pengwei07/PAPM.
Related papers
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
State-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets.
We propose a method to estimate the physical parameters of any known, continuous governing equation from single videos.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides [17.559471937824767]
We propose a conditional generative model called Force-guided Bridge Matching (FBM)
FBM learns full-atom time-coarsened dynamics and targets the Boltzmann-constrained distribution.
Experiments on two datasets consisting of peptides verify our superiority in terms of comprehensive metrics.
arXiv Detail & Related papers (2024-08-27T15:07:27Z) - Physics Informed Machine Learning (PIML) methods for estimating the remaining useful lifetime (RUL) of aircraft engines [0.0]
This paper is aimed at using the newly developing field of physics informed machine learning (PIML) to develop models for predicting the remaining useful lifetime (RUL) aircraft engines.
We consider the well-known benchmark NASA Commercial Modular Aero-Propulsion System Simulation System (C-MAPSS) data as the main data for this paper.
C-MAPSS is a well-studied dataset with much existing work in the literature that address RUL prediction with classical and deep learning methods.
arXiv Detail & Related papers (2024-06-21T19:55:34Z) - Adapting Physics-Informed Neural Networks To Optimize ODEs in Mosquito Population Dynamics [0.019972837513980313]
We propose a PINN framework with several improvements for forward and inverse problems for ODE systems.
The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations.
Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.
arXiv Detail & Related papers (2024-06-07T17:40:38Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Generalizable End-to-End Deep Learning Frameworks for Real-Time Attitude
Estimation Using 6DoF Inertial Measurement Units [0.0]
This paper presents a novel end-to-end deep learning framework for real-time inertial attitude estimation using 6DoF IMU measurements.
We propose two deep learning models that incorporate accelerometer and gyroscope readings as inputs.
Our results show that the proposed method outperforms state-of-the-art methods in terms of accuracy and robustness.
arXiv Detail & Related papers (2023-02-13T00:41:49Z) - Self-Validated Physics-Embedding Network: A General Framework for
Inverse Modelling [2.449329947677678]
Self-Embedding Physics-Embedding Network (SVPEN) is a general neural network framework for inverse modeling.
The embedded physical forward model ensures that any solution that successfully passes its validation is physically reasonable.
More than ten case studies in two highly nonlinear and entirely distinct applications are presented.
arXiv Detail & Related papers (2022-10-12T10:31:36Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols.
We propose four representative physical systems, as well as a collection of both widely used classical time-based and representative data-driven methods.
arXiv Detail & Related papers (2021-08-09T17:39:09Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.