Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides
- URL: http://arxiv.org/abs/2408.15126v5
- Date: Thu, 26 Sep 2024 16:38:32 GMT
- Title: Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides
- Authors: Ziyang Yu, Wenbing Huang, Yang Liu,
- Abstract summary: We propose a conditional generative model called Force-guided Bridge Matching (FBM)
FBM learns full-atom time-coarsened dynamics and targets the Boltzmann-constrained distribution.
Experiments on two datasets consisting of peptides verify our superiority in terms of comprehensive metrics.
- Score: 17.559471937824767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular Dynamics (MD) is crucial in various fields such as materials science, chemistry, and pharmacology to name a few. Conventional MD software struggles with the balance between time cost and prediction accuracy, which restricts its wider application. Recently, data-driven approaches based on deep generative models have been devised for time-coarsened dynamics, which aim at learning dynamics of diverse molecular systems over a long timestep, enjoying both universality and efficiency. Nevertheless, most current methods are designed solely to learn from the data distribution regardless of the underlying Boltzmann distribution, and the physics priors such as energies and forces are constantly overlooked. In this work, we propose a conditional generative model called Force-guided Bridge Matching (FBM), which learns full-atom time-coarsened dynamics and targets the Boltzmann-constrained distribution. With the guidance of our delicately-designed intermediate force field, FBM leverages favourable physics priors into the generation process, giving rise to enhanced simulations. Experiments on two datasets consisting of peptides verify our superiority in terms of comprehensive metrics and demonstrate transferability to unseen systems.
Related papers
- Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
This paper proposes a physics-AI hybrid model (i.e., WeatherGFT) which Generalizes weather forecasts to Finer-grained Temporal scales.
Specifically, we employ a carefully designed PDE kernel to simulate physical evolution on a small time scale.
We introduce a lead time-aware training framework to promote the generalization of the model at different lead times.
arXiv Detail & Related papers (2024-05-22T16:21:02Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Score dynamics: scaling molecular dynamics with picoseconds timestep via
conditional diffusion model [5.39025059364831]
We propose score dynamics (SD), a framework for learning accelerated evolution operators with large timesteps from molecular-dynamics simulations.
We construct graph neural network based score dynamics models of realistic molecular systems that are evolved with 10ps timesteps.
Our current SD implementation is about two orders of magnitude faster than the MD counterpart for the systems studied in this work.
arXiv Detail & Related papers (2023-10-02T22:29:45Z) - Timewarp: Transferable Acceleration of Molecular Dynamics by Learning
Time-Coarsened Dynamics [24.13304926093212]
We present Timewarp, an enhanced sampling method which uses a normalising flow as a proposal distribution in a Markov chain Monte Carlo method.
The flow is trained offline on MD trajectories and learns to make large steps in time, simulating the molecular dynamics of $105 - 106:textrmfs$.
arXiv Detail & Related papers (2023-02-02T15:48:39Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks [4.444748822792469]
Learning-based force fields have made significant progress in accelerating ab-initio MD simulation but are not fast enough for many real-world applications.
We aim to address these challenges by learning a multi-scale graph neural network that directly simulates coarse-grained MD with a very large time step.
arXiv Detail & Related papers (2022-04-21T18:07:08Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Fast and Sample-Efficient Interatomic Neural Network Potentials for
Molecules and Materials Based on Gaussian Moments [3.1829446824051195]
We present an improved NN architecture based on the previous GM-NN model.
The improved methodology is a pre-requisite for training-heavy such as active learning or learning-on-the-fly.
arXiv Detail & Related papers (2021-09-20T14:23:34Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
We propose a generative framework for learning an effective, lower-dimensional, coarse-grained dynamical model.
We demonstrate its efficacy and accuracy in multiscale physical systems of particle dynamics.
arXiv Detail & Related papers (2021-01-14T19:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.