論文の概要: Online Drift Detection with Maximum Concept Discrepancy
- arxiv url: http://arxiv.org/abs/2407.05375v1
- Date: Sun, 7 Jul 2024 13:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 19:57:34.662442
- Title: Online Drift Detection with Maximum Concept Discrepancy
- Title(参考訳): 最大概念差によるオンラインドリフト検出
- Authors: Ke Wan, Yi Liang, Susik Yoon,
- Abstract要約: 最大概念差に基づく新しい概念ドリフト検出手法であるMDD-DDを提案する。
本手法は,概念埋め込みのコントラスト学習により,様々な形態のコンセプトドリフトを適応的に同定することができる。
- 参考スコア(独自算出の注目度): 13.48123472458282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous learning from an immense volume of data streams becomes exceptionally critical in the internet era. However, data streams often do not conform to the same distribution over time, leading to a phenomenon called concept drift. Since a fixed static model is unreliable for inferring concept-drifted data streams, establishing an adaptive mechanism for detecting concept drift is crucial. Current methods for concept drift detection primarily assume that the labels or error rates of downstream models are given and/or underlying statistical properties exist in data streams. These approaches, however, struggle to address high-dimensional data streams with intricate irregular distribution shifts, which are more prevalent in real-world scenarios. In this paper, we propose MCD-DD, a novel concept drift detection method based on maximum concept discrepancy, inspired by the maximum mean discrepancy. Our method can adaptively identify varying forms of concept drift by contrastive learning of concept embeddings without relying on labels or statistical properties. With thorough experiments under synthetic and real-world scenarios, we demonstrate that the proposed method outperforms existing baselines in identifying concept drifts and enables qualitative analysis with high explainability.
- Abstract(参考訳): 膨大な量のデータストリームからの継続的な学習は、インターネット時代において非常に重要なものになる。
しかし、データストリームは時間とともに同じ分布に従わないことが多く、概念ドリフトと呼ばれる現象につながる。
固定静的モデルは,概念ドリフトデータストリームの推測には信頼性が低いため,概念ドリフトを検出する適応機構を確立することが重要である。
コンセプトドリフト検出の現在の手法は、主に下流モデルのラベルやエラー率が与えられ、あるいは基礎となる統計特性がデータストリームに存在すると仮定している。
しかし、これらのアプローチは、現実のシナリオでより一般的である複雑な不規則な分布シフトを伴う高次元データストリームに対処するのに苦労する。
本稿では,最大平均誤差に基づく新しい概念ドリフト検出手法であるMDD-DDを提案する。
本手法は, ラベルや統計特性に頼らずに, コントラスト学習により, 様々な形態のコンセプトドリフトを適応的に同定することができる。
合成・実世界のシナリオ下での徹底的な実験により,提案手法は概念ドリフトの同定において既存のベースラインよりも優れ,説明可能性の高い定性解析を可能にすることを実証した。
関連論文リスト
- Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - DriftGAN: Using historical data for Unsupervised Recurring Drift Detection [0.6358693097475243]
実世界のアプリケーションでは、入力データ分布は、概念ドリフト(concept drift)として知られる現象として、一定期間にわたって静的であることが多い。
ほとんどの概念ドリフト検出方法は、概念ドリフトを検出し、モデルを再訓練する要求をシグナル伝達する。
本稿では,GAN(Generative Adversarial Networks)に基づく教師なしの手法を提案する。
論文 参考訳(メタデータ) (2024-07-09T04:38:44Z) - A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data [40.00357483768265]
本研究では,Nighbor-Searching Discrepancyに基づく新しい概念ドリフト検出手法を提案する。
提案手法は,仮想ドリフトを無視しながら,実概念ドリフトを高精度に検出することができる。
また、ある階級の侵略や撤退を特定することで、分類境界の変化の方向を示すこともできる。
論文 参考訳(メタデータ) (2024-05-23T04:03:36Z) - Self-Supervised Class-Agnostic Motion Prediction with Spatial and Temporal Consistency Regularizations [53.797896854533384]
クラスに依存しない動き予測法は点雲全体の動きを直接予測する。
既存のほとんどのメソッドは、完全に教師付き学習に依存しているが、ポイントクラウドデータの手作業によるラベル付けは、手間と時間を要する。
3つの簡単な空間的・時間的正則化損失を導入し,自己指導型学習プロセスの効率化を図る。
論文 参考訳(メタデータ) (2024-03-20T02:58:45Z) - Methods for Generating Drift in Text Streams [49.3179290313959]
コンセプトドリフトは、実世界のデータセットで頻繁に発生する現象であり、時間とともにデータ分布の変化に対応する。
本稿では,ラベル付きドリフトを用いたデータセット作成を容易にするための4つのテキストドリフト生成手法を提案する。
その結果、ドリフトの直後にすべてのメソッドのパフォーマンスが低下し、インクリメンタルなSVMは、以前のパフォーマンスレベルを実行し、回復するのに最も速いことを示している。
論文 参考訳(メタデータ) (2024-03-18T23:48:33Z) - A comprehensive analysis of concept drift locality in data streams [3.5897534810405403]
概念ドリフトは、進化するデータ特性への効果的なモデル適応のために検出されなければならない。
本稿では,その局所性とスケールに基づいて,概念ドリフトの新たな分類法を提案する。
我々は, 様々な難易度において, 9つの最先端ドリフト検出器の比較評価を行った。
論文 参考訳(メタデータ) (2023-11-10T20:57:43Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
ストリーミング知覚は,ビデオオンライン知覚の1つの指標として,レイテンシと精度を共同評価するために提案される。
ストリーミング知覚のためのシンプルで効果的なフレームワークを構築します。
提案手法はArgoverse-HDデータセット上での競合性能を実現し,強力なベースラインに比べてAPを4.9%向上させる。
論文 参考訳(メタデータ) (2022-03-23T11:33:27Z) - Learning Parameter Distributions to Detect Concept Drift in Data Streams [13.20231558027132]
実コンセプトドリフト検出のための新しいフレームワークであるERICSを提案する。
予測モデルのパラメータをランダム変数として扱うことにより、最適パラメータの分布の変化に対応する概念ドリフトが示される。
ERICSはまた、既存のアプローチよりも大きな利点である入力レベルで概念ドリフトを検出することができる。
論文 参考訳(メタデータ) (2020-10-19T11:19:16Z) - Adversarial Concept Drift Detection under Poisoning Attacks for Robust
Data Stream Mining [15.49323098362628]
本稿では,敵対的攻撃と毒殺攻撃の存在下でのロバストな概念ドリフト検出のための枠組みを提案する。
本稿では,2種類の逆流の概念と,頑健な訓練可能なドリフト検出器の分類について紹介する。
また,ロバストネスの相対損失 (Relative Loss of Robustness) についても紹介する。
論文 参考訳(メタデータ) (2020-09-20T18:46:31Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。