論文の概要: Can Machines Learn the True Probabilities?
- arxiv url: http://arxiv.org/abs/2407.05526v1
- Date: Mon, 8 Jul 2024 00:19:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:29:37.354666
- Title: Can Machines Learn the True Probabilities?
- Title(参考訳): 機械は真の可能性を学ぶことができるか?
- Authors: Jinsook Kim,
- Abstract要約: 期待は、マシンが相互作用する客観的環境に関する真の事実に基づいている。
これらの事実は、真の客観的確率関数の形でAIモデルにエンコードすることができる。
機械が真の客観的確率を学べる場合、もしあれば、マシンがそれを学べない場合に、いくつかの基本的な前提の下で証明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When there exists uncertainty, AI machines are designed to make decisions so as to reach the best expected outcomes. Expectations are based on true facts about the objective environment the machines interact with, and those facts can be encoded into AI models in the form of true objective probability functions. Accordingly, AI models involve probabilistic machine learning in which the probabilities should be objectively interpreted. We prove under some basic assumptions when machines can learn the true objective probabilities, if any, and when machines cannot learn them.
- Abstract(参考訳): 不確実性が存在する場合、AIマシンは最適な結果に到達するために決定を下すように設計されている。
期待は、マシンが相互作用する客観的環境に関する真の事実に基づいており、それらの事実は真の客観的確率関数の形でAIモデルにエンコードされる。
したがって、AIモデルは確率論的機械学習を含み、確率は客観的に解釈されるべきである。
機械が真の客観的確率を学べる場合、もしあれば、マシンがそれを学べない場合に、いくつかの基本的な前提の下で証明する。
関連論文リスト
- Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordancesはアクション、オブジェクト、エフェクト間の関係の基本的な記述である。
本稿では,世界を探究し,その感覚経験から自律的にこれらの余裕を学習するエンボディエージェントの問題にアプローチする。
論文 参考訳(メタデータ) (2024-02-08T22:05:45Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Can I say, now machines can think? [0.0]
人工知能対応マシンの能力を分析し,検討した。
チューリングテストは、機械の能力を評価する上で重要な側面である。
インテリジェンスには他にも側面があり、AIマシンはこれらの側面の多くを表現している。
論文 参考訳(メタデータ) (2023-07-11T11:44:09Z) - Reconciling Individual Probability Forecasts [78.0074061846588]
データに同意する2つの当事者は、個々の確率をモデル化する方法に異を唱えることができない。
個々の確率は不可知であるが、計算的かつデータ効率のよいプロセスで競合できると結論付ける。
論文 参考訳(メタデータ) (2022-09-04T20:20:35Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - A Computability Perspective on (Verified) Machine Learning [0.5161531917413708]
検証済み機械学習が正確に何を意味するべきかは、あまり明確ではない。
検証されたMLの根底にある計算タスクをモデルに依存しない方法で定義し、それらが原理計算可能であることを示す。
論文 参考訳(メタデータ) (2021-02-12T15:47:41Z) - A Note on High-Probability versus In-Expectation Guarantees of
Generalization Bounds in Machine Learning [95.48744259567837]
統計的機械学習理論は、しばしば機械学習モデルの一般化を保証するよう試みる。
機械学習モデルのパフォーマンスに関する声明は、サンプリングプロセスを考慮する必要がある。
1つのステートメントを別のステートメントに変換する方法を示します。
論文 参考訳(メタデータ) (2020-10-06T09:41:35Z) - Verification of ML Systems via Reparameterization [6.482926592121413]
確率的プログラムを定理証明器で自動的に表現する方法を示す。
また、ベイズ仮説テストで用いられるヌルモデルは、人口統計学的パリティ(英語版)と呼ばれる公平性基準を満たすことを証明した。
論文 参考訳(メタデータ) (2020-07-14T02:19:25Z) - A Hierarchy of Limitations in Machine Learning [0.0]
本稿では,社会に応用された機械学習におけるモデルの概念的,手続き的,統計的制限の包括的,構造化された概要を論じる。
モデラー自身は、記述された階層を使って、可能な障害点を特定し、それらに対処する方法を考えることができます。
機械学習モデルの消費者は、機械学習を適用するかどうか、場所、方法に関する決定に直面したときに、何を問うべきかを知ることができる。
論文 参考訳(メタデータ) (2020-02-12T19:39:29Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z) - Deceptive AI Explanations: Creation and Detection [3.197020142231916]
我々は、AIモデルを用いて、偽りの説明を作成し、検出する方法について検討する。
実験的な評価として,GradCAMによるテキスト分類と説明の変更に着目した。
被験者200名を対象に, 偽装説明がユーザに与える影響について検討した。
論文 参考訳(メタデータ) (2020-01-21T16:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。