論文の概要: Spatio-Temporal Encoding and Decoding-Based Method for Future Human Activity Skeleton Synthesis
- arxiv url: http://arxiv.org/abs/2407.05573v1
- Date: Mon, 8 Jul 2024 03:08:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 17:10:02.903597
- Title: Spatio-Temporal Encoding and Decoding-Based Method for Future Human Activity Skeleton Synthesis
- Title(参考訳): 時空間符号化と復号化による将来のヒト活動骨格合成
- Authors: Tingyu Liu, Jun Huang, Chenyi Weng,
- Abstract要約: 観測された活動データに基づいて将来の活動情報を推定することは、早期活動予測の精度を向上させるための重要なステップである。
GAN(Generative Adversarial Network)やジョイントラーニングフレームワークに基づく従来の手法は、観測率の低い場合の予測精度が向上する。
本稿では,将来のヒト活動合成のための骨格に基づく符号化と復号化手法を提案する。
- 参考スコア(独自算出の注目度): 5.035187151217183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring future activity information based on observed activity data is a crucial step to improve the accuracy of early activity prediction. Traditional methods based on generative adversarial networks(GAN) or joint learning frameworks can achieve good prediction accuracy under low observation ratios, but they usually have high computational costs. In view of this, this paper proposes a spatio-temporal encoding and decoding-based method for future human activity skeleton synthesis. Firstly, algorithms such as time control, discrete cosine transform, and low-pass filtering are used to cut or pad the skeleton sequences. Secondly, the encoder and decoder are responsible for extracting intermediate semantic encoding from observed skeleton sequences and inferring future sequences from the intermediate semantic encoding, respectively. Finally, joint displacement error, velocity error, and acceleration error, three higher-order kinematic features, are used as key components of the loss function to optimize model parameters. Experimental results show that the proposed future skeleton synthesis algorithm performs better than some existing algorithms. It generates skeleton sequences with smaller errors and fewer model parameters, effectively providing future information for early activity prediction.
- Abstract(参考訳): 観測された活動データに基づいて将来の活動情報を推定することは、早期活動予測の精度を向上させるための重要なステップである。
GAN(Generative Adversarial Network)や共同学習フレームワークをベースとした従来の手法は、観測率の低い場合の予測精度が向上するが、計算コストは高い。
そこで本研究では,将来のヒトの骨格合成のための時空間符号化と復号法を提案する。
まず、時間制御、離散コサイン変換、ローパスフィルタリングなどのアルゴリズムを用いて骨格配列を切断またはパッドする。
第二に、エンコーダとデコーダは、観察されたスケルトン配列から中間セマンティックエンコーディングを抽出し、中間セマンティックエンコーディングからそれぞれ将来のシーケンスを推測する。
最後に, 3つの高次運動特性である関節変位誤差, 速度誤差, 加速度誤差を損失関数の鍵成分として用いて, モデルパラメータを最適化する。
実験により,提案する骨格合成アルゴリズムは既存のアルゴリズムよりも優れた性能を示した。
より少ないエラーと少ないモデルパラメータでスケルトンシーケンスを生成し、早期活動予測のための将来的な情報を提供する。
関連論文リスト
- Reinforced Decoder: Towards Training Recurrent Neural Networks for Time Series Forecasting [1.5213268724320657]
繰り返しニューラルネットワークに基づくシーケンス・ツー・シーケンスモデルは、マルチステップの時系列予測に広く応用されている。
これらのモデルは通常、デコーダ入力として以前の予測または実際の観測値を使用して訓練されたデコーダを含む。
本研究は、代替デコーダ入力を生成する補助モデルを導入する強化デコーダと呼ばれる新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-06-14T00:24:29Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
予測対象として高レベルな文脈化機能を使用することで,優れた性能が得られることを示す。
具体的には、シンプルで効率的な3D行動表現学習フレームワークであるSkeleton2vecを提案する。
提案するSkeleton2vecは,従来の手法より優れ,最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-01-01T12:08:35Z) - Deep Learning for real-time neural decoding of grasp [0.0]
本稿では,ニューラルネットワークの復号化のためのDeep Learningに基づく手法を提案する。
提案手法の主な目的は、これまでの神経科学知識に頼ることなく、最先端の復号精度を改善することである。
論文 参考訳(メタデータ) (2023-11-02T08:26:29Z) - Retrieving Continuous Time Event Sequences using Neural Temporal Point
Processes with Learnable Hashing [24.963828650935913]
エンド・ツー・エンドのCTES検索に特化して設計された一級フレームワークであるNeuroSeqRetを提案する。
我々は,精度と効率のトレードオフに基づいて,異なる種類のアプリケーションに対する妥当性モデルの4つの変種を開発する。
実験の結果,NeuroSeqRetの精度は向上し,ハッシュ機構の有効性も示された。
論文 参考訳(メタデータ) (2023-07-13T18:54:50Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
予測符号化ネットワークは、ベイズ統計学と神経科学の両方にルーツを持つ神経科学にインスパイアされたモデルである。
シナプス重みに対する更新規則の時間的スケジュールを変更するだけで、元の規則よりもずっと効率的で安定したアルゴリズムが得られることを示す。
論文 参考訳(メタデータ) (2022-11-16T00:11:04Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
論文 参考訳(メタデータ) (2022-04-05T12:52:45Z) - Bioinspired Cortex-based Fast Codebook Generation [0.09449650062296822]
脳内の知覚皮質ネットワークにインスパイアされた特徴抽出法を提案する。
バイオインスパイアされた大脳皮質と呼ばれるこのアルゴリズムは、より優れた計算効率を持つストリーミング信号の特徴に収束する。
ここでは、クラスタリングおよびベクトル量子化における大脳皮質モデルの優れた性能を示す。
論文 参考訳(メタデータ) (2022-01-28T18:37:43Z) - An autoencoder wavelet based deep neural network with attention
mechanism for multistep prediction of plant growth [4.077787659104315]
本稿では,植物茎径変動予測(sdv)に着目した農業における植物成長予測手法を提案する。
ウェーブレット分解を元のデータに適用し、モデルフィッティングを容易にし、ノイズを低減する。
エンコーダ・デコーダフレームワークはLong Short Term Memory (LSTM)を用いて開発され、データから適切な特徴抽出に使用される。
時系列データの長期依存性をモデル化するために,LSTMと注意メカニズムを含む繰り返しニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-07T20:30:39Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
リカレントニューラルネットワークとフィードフォワードディープネットワークという2つの一般的な手法は、粗い動きの傾向を予測することができる。
本稿では,新たな逆誤差増大を伴う簡易かつ効果的な粗大きめ機構に従えば,ARNet(Adversarial Refinement Network)を提案する。
論文 参考訳(メタデータ) (2020-11-23T05:42:20Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。