Improving the trainability of VQE on NISQ computers for solving portfolio optimization using convex interpolation
- URL: http://arxiv.org/abs/2407.05589v1
- Date: Mon, 8 Jul 2024 03:51:54 GMT
- Title: Improving the trainability of VQE on NISQ computers for solving portfolio optimization using convex interpolation
- Authors: Shengbin Wang, Guihui Li, Zhaoyun Chen, Peng Wang, Menghan Dou, Haiyong Zheng, Zhimin Wang, Yongjian Gu, Yu-Chun Wu, Guo-Ping Guo,
- Abstract summary: We improve the trainability of variational quantum eigensolver (VQE) by utilizing convexarity to solve portfolio optimization problems.
Our proposals can be extended to improve the trainability for solving other large-scale optimization problems that are widely used in real applications.
- Score: 8.186804065389007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving combinatorial optimization problems using variational quantum algorithms (VQAs) represents one of the most promising applications in the NISQ era. However, the limited trainability of VQAs could hinder their scalability to large problem sizes. In this paper, we improve the trainability of variational quantum eigensolver (VQE) by utilizing convex interpolation to solve portfolio optimization. The idea is inspired by the observation that the Dicke state possesses an inherent clustering property. Consequently, the energy of a state with a larger Hamming distance from the ground state intuitively results in a greater energy gap away from the ground state energy in the overall distribution trend. Based on convex interpolation, the location of the ground state can be evaluated by learning the property of a small subset of basis states in the Hilbert space. This enlightens naturally the proposals of the strategies of close-to-solution initialization, regular cost function landscape, and recursive ansatz equilibrium partition. The successfully implementation of a $40$-qubit experiment using only $10$ superconducting qubits demonstrates the effectiveness of our proposals. Furthermore, the quantum inspiration has also spurred the development of a prototype greedy algorithm. Extensive numerical simulations indicate that the hybridization of VQE and greedy algorithms achieves a mutual complementarity, combining the advantages of both global and local optimization methods. Our proposals can be extended to improve the trainability for solving other large-scale combinatorial optimization problems that are widely used in real applications, paving the way to unleash quantum advantages of NISQ computers in the near future.
Related papers
- Variational quantum eigensolver with linear depth problem-inspired
ansatz for solving portfolio optimization in finance [7.501820750179541]
This paper introduces the variational quantum eigensolver (VQE) to solve portfolio optimization problems in finance.
We implement the HDC experiments on the superconducting quantum computer Wu Kong with up to 55 qubits.
The HDC scheme shows great potential for achieving quantum advantage in the NISQ era.
arXiv Detail & Related papers (2024-03-07T07:45:47Z) - Variational Quantum Eigensolver with Constraints (VQEC): Solving Constrained Optimization Problems via VQE [0.0]
Variational quantum approaches have shown great promise in finding near-optimal solutions to computationally challenging tasks.
This work proposes a hybrid quantum-classical algorithmic paradigm termed VQEC to handle optimization with constraints.
arXiv Detail & Related papers (2023-11-14T19:49:09Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.