論文の概要: Cyber Physical Games
- arxiv url: http://arxiv.org/abs/2407.05817v1
- Date: Mon, 8 Jul 2024 10:54:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 16:00:10.808409
- Title: Cyber Physical Games
- Title(参考訳): サイバー物理ゲーム
- Authors: Warisa Sritriratanarak, Paulo Garcia,
- Abstract要約: エージェントと基礎となる物理的環境の間のコミュニケーション媒体に固有の非決定性が環境進化を引き起こすことを示す。
我々はこれらの創発性特性をサイバー物理ゲーム(Cyber Physical Games)と命名し、その特性について研究する。
本稿では,確率的有限状態オートマタによるサイバー物理ゲームの評価により,最も可能性の高いシステム進化を決定するアルゴリズムモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a formulation of multi-agents operating within a Cyber-Physical System, resulting in collaborative or adversarial games. We show that the non-determinism inherent in the communication medium between agents and the underlying physical environment gives rise to environment evolution that is a probabilistic function of agents' strategies. We name these emergent properties Cyber Physical Games and study its properties. We present an algorithmic model that determines the most likely system evolution, approximating Cyber Physical Games through Probabilistic Finite State Automata, and evaluate it on collaborative and adversarial versions of the Iterated Boolean Game, comparing theoretical results with simulated ones. Results support the validity of the proposed model, and suggest several required research directions to continue evolving our understanding of Cyber Physical System, as well as how to best design agents that must operate within such environments.
- Abstract(参考訳): サイバー物理システム内で動作するマルチエージェントの定式化について述べる。
本研究では,エージェント間のコミュニケーション媒体に固有の非決定主義が,エージェントの戦略の確率的機能である環境進化を引き起こすことを示す。
我々はこれらの創発性特性をサイバー物理ゲーム(Cyber Physical Games)と命名し、その特性について研究する。
本稿では, 確率的有限状態オートマタによるサイバー物理ゲームの評価を行い, 実験結果とシミュレーション結果を比較したアルゴリズムモデルを提案する。
結果は,提案モデルの有効性を裏付けるものであり,サイバー物理システムに対する理解を深めるために必要な研究の方向性や,そのような環境下での操作を最善にデザインする方法を示唆している。
関連論文リスト
- Symbiotic Game and Foundation Models for Cyber Deception Operations in Strategic Cyber Warfare [16.378537388284027]
私たちは現在、戦術の急速な進化、知性の非対称性の向上、ハッキングツールのアクセシビリティ向上など、前例のないサイバー戦争に直面しています。
本章は、サイバー詐欺戦術の分析、設計、実施におけるゲーム理論モデルと基礎モデル(FM)の重要な役割を強調することを目的とする。
論文 参考訳(メタデータ) (2024-03-14T20:17:57Z) - ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [90.97595947781426]
ContPhyは、マシン物理常識を評価するための新しいベンチマークである。
私たちは、さまざまなAIモデルを評価し、ContPhyで満足なパフォーマンスを達成するのに依然として苦労していることがわかった。
また、近年の大規模言語モデルとパーティクルベースの物理力学モデルを組み合わせるためのオラクルモデル(ContPRO)を導入する。
論文 参考訳(メタデータ) (2024-02-09T01:09:21Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
エージェントAI(Agent AI)とは、視覚刺激や言語入力、その他の環境データを知覚できる対話型システムである。
我々は,バーチャルリアリティやシミュレートされたシーンを容易に作成し,仮想環境内に具体化されたエージェントと対話できる未来を構想する。
論文 参考訳(メタデータ) (2024-01-07T19:11:18Z) - Energy-based Potential Games for Joint Motion Forecasting and Control [0.125828876338076]
この研究は、モーション予測と制御における相互作用モデリングに対処するための数学的枠組みとしてゲーム理論を用いる。
差動ゲーム,最適制御,エネルギーベースモデル間の接続を確立し,提案したエネルギーベースポテンシャルゲーム定式化の下で既存のアプローチをどのように統合できるかを示す。
本稿では,ゲームパラメータ推論のためのニューラルネットワークと,帰納バイアスとして機能するゲーム理論最適化層を組み合わせた,新たなエンドツーエンド学習アプリケーションを提案する。
論文 参考訳(メタデータ) (2023-12-04T11:30:26Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - On a Connection between Differential Games, Optimal Control, and
Energy-based Models for Multi-Agent Interactions [0.13499500088995461]
差分ゲーム,最適制御,エネルギーベースモデルの関連性を示す。
この定式化に基づいて、この研究はエンド・ツー・エンドの学習アプリケーションを導入している。
シミュレーションされた移動ロボット歩行者インタラクションと実世界の自動運転データを用いた実験は、実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-08-31T08:30:11Z) - Generation of Probabilistic Synthetic Data for Serious Games: A Case
Study on Cyberbullying [0.45880283710344055]
本稿では,対話型ナラティブに基づく現実的なゲームのための確率論的合成データを生成するシミュレータを提案する。
このアーキテクチャは、他の研究者が同様の問題を解決するために、汎用的でモジュール化された設計である。
提案したアーキテクチャと手法を,サイバーいじめに焦点を当てた真剣なゲームの場合に適用する。
論文 参考訳(メタデータ) (2023-06-02T08:43:15Z) - Modelling Behaviour Change using Cognitive Agent Simulations [0.0]
本稿では, シミュレーションエージェントに選択された行動変化理論を適用するために, プログレッシブ・イン・プログレッシブ・リサーチを提案する。
この研究は、不適切な状況下での自己決定的目標達成に必要な複雑なエージェントアーキテクチャに焦点を当てている。
論文 参考訳(メタデータ) (2021-10-16T19:19:08Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) はインタラクティブなマルチモーダル物理シミュレーションのためのプラットフォームである。
TDWは、リッチな3D環境において、高忠実な感覚データのシミュレーションと、移動体エージェントとオブジェクト間の物理的相互作用を可能にする。
我々は、コンピュータビジョン、機械学習、認知科学における新たな研究方向において、TDWによって実現された初期実験を提示する。
論文 参考訳(メタデータ) (2020-07-09T17:33:27Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
インタラクティブで具体化された視覚AIの研究を民主化するためにRoboTHORを導入する。
シミュレーションで訓練されたモデルの性能は,シミュレーションと慎重に構築された物理アナログの両方で試験される場合,大きな差があることが示される。
論文 参考訳(メタデータ) (2020-04-14T20:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。