Advancing Automated Deception Detection: A Multimodal Approach to Feature Extraction and Analysis
- URL: http://arxiv.org/abs/2407.06005v1
- Date: Mon, 8 Jul 2024 14:59:10 GMT
- Title: Advancing Automated Deception Detection: A Multimodal Approach to Feature Extraction and Analysis
- Authors: Mohamed Bahaa, Mena Hany, Ehab E. Zakaria,
- Abstract summary: This research focuses on the extraction and combination of various features to enhance the accuracy of deception detection models.
By systematically extracting features from visual, audio, and text data, and experimenting with different combinations, we developed a robust model that achieved an impressive 99% accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the exponential increase in video content, the need for accurate deception detection in human-centric video analysis has become paramount. This research focuses on the extraction and combination of various features to enhance the accuracy of deception detection models. By systematically extracting features from visual, audio, and text data, and experimenting with different combinations, we developed a robust model that achieved an impressive 99% accuracy. Our methodology emphasizes the significance of feature engineering in deception detection, providing a clear and interpretable framework. We trained various machine learning models, including LSTM, BiLSTM, and pre-trained CNNs, using both single and multi-modal approaches. The results demonstrated that combining multiple modalities significantly enhances detection performance compared to single modality training. This study highlights the potential of strategic feature extraction and combination in developing reliable and transparent automated deception detection systems in video analysis, paving the way for more advanced and accurate detection methodologies in future research.
Related papers
- A Multimodal Framework for Deepfake Detection [0.0]
Deepfakes, synthetic media created using AI, can convincingly alter videos and audio to misrepresent reality.
Our research addresses the critical issue of deepfakes through an innovative multimodal approach.
Our framework combines visual and auditory analyses, yielding an accuracy of 94%.
arXiv Detail & Related papers (2024-10-04T14:59:10Z) - Leveraging Mixture of Experts for Improved Speech Deepfake Detection [53.69740463004446]
Speech deepfakes pose a significant threat to personal security and content authenticity.
We introduce a novel approach for enhancing speech deepfake detection performance using a Mixture of Experts architecture.
arXiv Detail & Related papers (2024-09-24T13:24:03Z) - An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
Anomaly detection is critical for the secure and reliable operation of industrial control systems.
This paper presents a novel deep generative model to meet this need.
arXiv Detail & Related papers (2024-05-03T23:58:27Z) - Multimodal Stress Detection Using Facial Landmarks and Biometric Signals [1.0124625066746595]
Multi-modal learning aims to capitalize on the strength of each modality rather than relying on a single signal.
This paper proposes a multi-modal learning approach for stress detection that integrates facial landmarks and biometric signals.
arXiv Detail & Related papers (2023-11-06T23:20:30Z) - Multi Self-supervised Pre-fine-tuned Transformer Fusion for Better
Intelligent Transportation Detection [0.32634122554914]
Intelligent transportation system combines advanced information technology to provide intelligent services such as monitoring, detection, and early warning for modern transportation.
Existing detection methods in intelligent transportation are limited by two aspects.
First, there is a difference between the model knowledge pre-trained on large-scale datasets and the knowledge required for target task.
Second, most detection models follow the pattern of single-source learning, which limits the learning ability.
arXiv Detail & Related papers (2023-10-17T14:32:49Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
We show how to use pre-trained convolutional neural net models to perform feature extraction and context mining.
We derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method.
arXiv Detail & Related papers (2020-10-06T00:26:14Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
Outlier detection is an important data mining task with numerous practical applications.
We propose AutoOD, an automated outlier detection framework, which aims to search for an optimal neural network model.
Experimental results on various real-world benchmark datasets demonstrate that the deep model identified by AutoOD achieves the best performance.
arXiv Detail & Related papers (2020-06-19T18:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.