Uni-ELF: A Multi-Level Representation Learning Framework for Electrolyte Formulation Design
- URL: http://arxiv.org/abs/2407.06152v1
- Date: Mon, 8 Jul 2024 17:26:49 GMT
- Title: Uni-ELF: A Multi-Level Representation Learning Framework for Electrolyte Formulation Design
- Authors: Boshen Zeng, Sian Chen, Xinxin Liu, Changhong Chen, Bin Deng, Xiaoxu Wang, Zhifeng Gao, Yuzhi Zhang, Weinan E, Linfeng Zhang,
- Abstract summary: We introduce Uni-ELF, a novel multi-level representation learning framework to advance electrolyte design.
Our approach involves two-stage pretraining: reconstructing three-dimensional molecular structures at the molecular level using the Uni-Mol model, and predicting statistical structural properties.
Through this comprehensive pretraining, Uni-ELF is able to capture intricate molecular and mixture-level information, which significantly enhances its predictive capability.
We believe this innovative framework will pave the way for automated AI-based electrolyte design and engineering.
- Score: 20.855235423913285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in lithium battery technology heavily rely on the design and engineering of electrolytes. However, current schemes for molecular design and recipe optimization of electrolytes lack an effective computational-experimental closed loop and often fall short in accurately predicting diverse electrolyte formulation properties. In this work, we introduce Uni-ELF, a novel multi-level representation learning framework to advance electrolyte design. Our approach involves two-stage pretraining: reconstructing three-dimensional molecular structures at the molecular level using the Uni-Mol model, and predicting statistical structural properties (e.g., radial distribution functions) from molecular dynamics simulations at the mixture level. Through this comprehensive pretraining, Uni-ELF is able to capture intricate molecular and mixture-level information, which significantly enhances its predictive capability. As a result, Uni-ELF substantially outperforms state-of-the-art methods in predicting both molecular properties (e.g., melting point, boiling point, synthesizability) and formulation properties (e.g., conductivity, Coulombic efficiency). Moreover, Uni-ELF can be seamlessly integrated into an automatic experimental design workflow. We believe this innovative framework will pave the way for automated AI-based electrolyte design and engineering.
Related papers
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - Efficient Generation of Molecular Clusters with Dual-Scale Equivariant Flow Matching [5.909830898977327]
We develop a dual-scale flow matching method that separates training and inference into coarse-grained and all-atom stages.
We demonstrate the effectiveness of this method on a dataset of Y6 molecular clusters obtained through MD simulations.
arXiv Detail & Related papers (2024-10-10T02:17:27Z) - COEFF-KANs: A Paradigm to Address the Electrolyte Field with KANs [5.759388420139191]
We propose a novel method to automatically predict Coulombic Efficiency (CE) based on the composition of liquid electrolytes.
We input the obtained electrolyte features into a Multi-layer Perceptron or Kolmogorov-Arnold Network to predict CE.
Experimental results on a real-world dataset demonstrate that our method achieves SOTA for predicting CE compared to all baselines.
arXiv Detail & Related papers (2024-07-24T14:45:25Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
We develop a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data.
Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties.
arXiv Detail & Related papers (2024-05-09T19:51:27Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Formulation Graphs for Mapping Structure-Composition of Battery
Electrolytes to Device Performance [0.08974531206817746]
Formulation Graph Convolution Network (F-GCN) can map structure-composition relationship of the individual components to the property of liquid formulation as whole.
The model is shown to predict the performance metrics like Coulombic Efficiency (CE) and specific capacity of new electrolyte formulations with lowest reported errors.
arXiv Detail & Related papers (2023-07-07T19:34:43Z) - Toward High-Performance Energy and Power Battery Cells with Machine
Learning-based Optimization of Electrode Manufacturing [61.27691515336054]
In this study, we tackle the issue of high-performance electrodes for desired battery application conditions.
We propose a powerful data-driven approach supported by a deterministic machine learning (ML)-assisted pipeline for bi-objective optimization of the electrochemical performance.
Our results suggested a high amount of active material, combined with intermediate values of solid content in the slurry and calendering degree, to achieve the optimal electrodes.
arXiv Detail & Related papers (2023-07-07T13:48:50Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
We formulate molecular optimization as a style transfer problem and present a novel generative model that could automatically learn internal differences between two groups of non-parallel data.
Experiments on two molecular optimization tasks, toxicity modification and synthesizability improvement, demonstrate that our model significantly outperforms several state-of-the-art methods.
arXiv Detail & Related papers (2021-11-30T06:10:22Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
We refine the OrbNet model to accurately predict energy, forces, and other response properties for molecules.
The model is end-to-end differentiable due to the derivation of analytic gradients for all electronic structure terms.
It is shown to be transferable across chemical space due to the use of domain-specific features.
arXiv Detail & Related papers (2020-11-05T06:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.