論文の概要: Auditing of AI: Legal, Ethical and Technical Approaches
- arxiv url: http://arxiv.org/abs/2407.06235v1
- Date: Sun, 7 Jul 2024 12:49:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 22:22:56.644871
- Title: Auditing of AI: Legal, Ethical and Technical Approaches
- Title(参考訳): AIの監査 - 法的、倫理的、技術的アプローチ
- Authors: Jakob Mokander,
- Abstract要約: AI監査は、研究と実践の急速に成長している分野である。
AI監査に対する異なるアプローチには、さまざまな余裕と制約がある。
AIガバナンスメカニズムとしての監査の進化における次のステップは、これらの利用可能なアプローチのインターリンクであるべきです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI auditing is a rapidly growing field of research and practice. This review article, which doubles as an editorial to Digital Societys topical collection on Auditing of AI, provides an overview of previous work in the field. Three key points emerge from the review. First, contemporary attempts to audit AI systems have much to learn from how audits have historically been structured and conducted in areas like financial accounting, safety engineering and the social sciences. Second, both policymakers and technology providers have an interest in promoting auditing as an AI governance mechanism. Academic researchers can thus fill an important role by studying the feasibility and effectiveness of different AI auditing procedures. Third, AI auditing is an inherently multidisciplinary undertaking, to which substantial contributions have been made by computer scientists and engineers as well as social scientists, philosophers, legal scholars and industry practitioners. Reflecting this diversity of perspectives, different approaches to AI auditing have different affordances and constraints. Specifically, a distinction can be made between technology-oriented audits, which focus on the properties and capabilities of AI systems, and process oriented audits, which focus on technology providers governance structures and quality management systems. The next step in the evolution of auditing as an AI governance mechanism, this article concludes, should be the interlinking of these available (and complementary) approaches into structured and holistic procedures to audit not only how AI systems are designed and used but also how they impact users, societies and the natural environment in applied settings over time.
- Abstract(参考訳): AI監査は、研究と実践の急速に成長している分野である。
このレビュー記事は、AIの監査に関するデジタル・ソサエティのトピック・コレクションの編集を兼ねている。
レビューから3つの重要なポイントが浮かび上がっている。
第一に、現代のAIシステムの監査の試みは、財務会計、安全工学、社会科学といった分野における監査の歴史的構造から学ぶべきことがたくさんある。
第2に、政策立案者と技術提供者は、AIガバナンスメカニズムとしての監査を促進することに関心を持っている。
これにより、学術研究者は、異なるAI監査手順の実現可能性と有効性を研究することで、重要な役割を果たすことができる。
第3に、AI監査は本質的には多分野にわたる事業であり、コンピュータ科学者や技術者、社会科学者、哲学者、法学者、産業実践家らによって多大な貢献がなされている。
このような視点の多様性を反映して、AI監査に対する異なるアプローチには、さまざまな余裕と制約がある。
具体的には、AIシステムの特性と能力に重点を置く技術指向監査と、技術提供者によるガバナンス構造と品質管理システムに重点を置くプロセス指向監査とを区別することができる。
この記事では、AIガバナンスメカニズムとしての監査の進化の次のステップとして、これらの利用可能な(および補完的な)アプローチを、AIシステムの設計と使用方法だけでなく、時間とともに適用された設定におけるユーザ、社会、自然環境にどのように影響するかを監査するための構造化および全体的手順に相互接続するべきである、と結論付けます。
関連論文リスト
- Assessing the Auditability of AI-integrating Systems: A Framework and Learning Analytics Case Study [0.0]
監査の有効性は,監査システムの監査可能性に左右される。
本稿では,AI統合システムの監査性を評価するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T13:43:21Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - A Blueprint for Auditing Generative AI [0.9999629695552196]
生成AIシステムは創発的な能力を示し、幅広い下流タスクに適応できる。
既存の監査手順は、生成的AIシステムによって引き起こされるガバナンスの課題に対処できない。
本稿では、生成AIシステムの設計と普及を行う技術提供者のガバナンス監査、事前学習後の生成AIシステムのモデル監査、生成AIシステムに基づくアプリケーションのアプリケーション監査という3層的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-07T11:56:54Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - AI auditing: The Broken Bus on the Road to AI Accountability [1.9758196889515185]
「AI監査」エコシステムは泥だらけで不正確で、様々な概念を掘り下げて、実践に関わるステークホルダーをマップアウトするのは困難です。
まず、規制当局、法律事務所、市民社会、ジャーナリズム、アカデミック、コンサルティング機関による現在のAI監査の実践を分類する。
私たちは、AI監査研究のごく一部だけが、望ましい説明責任の結果に変換されていることに気付きました。
論文 参考訳(メタデータ) (2024-01-25T19:00:29Z) - Advancing AI Audits for Enhanced AI Governance [1.875782323187985]
このポリシーレコメンデーションは、AIサービスやシステムの監査に関する問題を要約する。
健全なAIガバナンスに寄与するAI監査を促進するための3つの推奨事項を提示している。
論文 参考訳(メタデータ) (2023-11-26T16:18:17Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - AI Governance for Businesses [2.072259480917207]
データを有効に活用し、AI関連のコストとリスクを最小限にすることで、AIを活用することを目指している。
この作業では、AIプロダクトをシステムとみなし、機械学習(ML)モデルによって(トレーニング)データを活用する重要な機能が提供される。
我々のフレームワークは、AIガバナンスを4次元に沿ってデータガバナンス、(ML)モデル、(AI)システムに分解します。
論文 参考訳(メタデータ) (2020-11-20T22:31:37Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。