論文の概要: Advancing AI Audits for Enhanced AI Governance
- arxiv url: http://arxiv.org/abs/2312.00044v1
- Date: Sun, 26 Nov 2023 16:18:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 03:59:27.387258
- Title: Advancing AI Audits for Enhanced AI Governance
- Title(参考訳): AIガバナンスの強化のためのAI監査の強化
- Authors: Arisa Ema, Ryo Sato, Tomoharu Hase, Masafumi Nakano, Shinji Kamimura,
Hiromu Kitamura
- Abstract要約: このポリシーレコメンデーションは、AIサービスやシステムの監査に関する問題を要約する。
健全なAIガバナンスに寄与するAI監査を促進するための3つの推奨事項を提示している。
- 参考スコア(独自算出の注目度): 1.875782323187985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As artificial intelligence (AI) is integrated into various services and
systems in society, many companies and organizations have proposed AI
principles, policies, and made the related commitments. Conversely, some have
proposed the need for independent audits, arguing that the voluntary principles
adopted by the developers and providers of AI services and systems
insufficiently address risk. This policy recommendation summarizes the issues
related to the auditing of AI services and systems and presents three
recommendations for promoting AI auditing that contribute to sound AI
governance. Recommendation1.Development of institutional design for AI audits.
Recommendation2.Training human resources for AI audits. Recommendation3.
Updating AI audits in accordance with technological progress.
In this policy recommendation, AI is assumed to be that which recognizes and
predicts data with the last chapter outlining how generative AI should be
audited.
- Abstract(参考訳): 人工知能(AI)が社会の様々なサービスやシステムに統合されるにつれて、多くの企業や組織がAIの原則や政策を提案し、関連するコミットメントを行った。
逆に、独立監査の必要性を提案し、AIサービスやシステムの開発者や提供者が採用する自発的な原則がリスクを十分に解決する、と主張する者もいる。
このポリシーレコメンデーションは、AIサービスとシステムの監査に関する問題を要約し、健全なAIガバナンスに寄与するAI監査を促進するための3つのレコメンデーションを提示する。
勧告1.AI監査のための制度設計の開発
推薦2.AI監査のための人材育成
勧告3。
技術進歩に応じてAI監査を更新する。
このポリシーレコメンデーションでは、AIは、生成AIがどのように監査されるべきかを概説する最後の章でデータを認識し、予測するものであると仮定されている。
関連論文リスト
- Auditing of AI: Legal, Ethical and Technical Approaches [0.0]
AI監査は、研究と実践の急速に成長している分野である。
AI監査に対する異なるアプローチには、さまざまな余裕と制約がある。
AIガバナンスメカニズムとしての監査の進化における次のステップは、これらの利用可能なアプローチのインターリンクであるべきです。
論文 参考訳(メタデータ) (2024-07-07T12:49:58Z) - A Blueprint for Auditing Generative AI [0.9999629695552196]
生成AIシステムは創発的な能力を示し、幅広い下流タスクに適応できる。
既存の監査手順は、生成的AIシステムによって引き起こされるガバナンスの課題に対処できない。
本稿では、生成AIシステムの設計と普及を行う技術提供者のガバナンス監査、事前学習後の生成AIシステムのモデル監査、生成AIシステムに基づくアプリケーションのアプリケーション監査という3層的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-07-07T11:56:54Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - AI auditing: The Broken Bus on the Road to AI Accountability [1.9758196889515185]
「AI監査」エコシステムは泥だらけで不正確で、様々な概念を掘り下げて、実践に関わるステークホルダーをマップアウトするのは困難です。
まず、規制当局、法律事務所、市民社会、ジャーナリズム、アカデミック、コンサルティング機関による現在のAI監査の実践を分類する。
私たちは、AI監査研究のごく一部だけが、望ましい説明責任の結果に変換されていることに気付きました。
論文 参考訳(メタデータ) (2024-01-25T19:00:29Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Conformity Assessments and Post-market Monitoring: A Guide to the Role
of Auditing in the Proposed European AI Regulation [0.0]
欧州人工知能法(European Artificial Intelligence Act)において提案されている2つの主要な執行機構について解説し議論する。
我々はAI監査を行うためのヨーロッパ規模のエコシステムを確立するための提案としてAIAが解釈できると論じる。
論文 参考訳(メタデータ) (2021-11-09T11:59:47Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。