論文の概要: Personality Analysis for Social Media Users using Arabic language and its Effect on Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2407.06314v2
- Date: Fri, 19 Jul 2024 04:14:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 21:58:59.143923
- Title: Personality Analysis for Social Media Users using Arabic language and its Effect on Sentiment Analysis
- Title(参考訳): アラビア語を用いたソーシャルメディア利用者のパーソナリティ分析と感性分析への影響
- Authors: Mokhaiber Dandash, Masoud Asadpour,
- Abstract要約: 本研究では、Twitter上でのアラビア語の使用と人格特性と感情分析への影響について検討した。
パーソナリティデータを取得するために、アラビア語で16人格テストを受けたユーザのタイムラインとプロフィールを16人格.comでクロールした。
その結果,人格がソーシャルメディアの感情に影響を及ぼすことが明らかとなった。
- 参考スコア(独自算出の注目度): 1.2903829793534267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media is heading toward personalization more and more, where individuals reveal their beliefs, interests, habits, and activities, simply offering glimpses into their personality traits. This study, explores the correlation between the use of Arabic language on twitter, personality traits and its impact on sentiment analysis. We indicated the personality traits of users based on the information extracted from their profile activities, and the content of their tweets. Our analysis incorporated linguistic features, profile statistics (including gender, age, bio, etc.), as well as additional features like emoticons. To obtain personality data, we crawled the timelines and profiles of users who took the 16personalities test in Arabic on 16personalities.com. Our dataset "AraPers" comprised 3,250 users who shared their personality results on twitter. We implemented various machine learning techniques, to reveal personality traits and developed a dedicated model for this purpose, achieving a 74.86% accuracy rate with BERT, analysis of this dataset proved that linguistic features, profile features and derived model can be used to differentiate between different personality traits. Furthermore, our findings demonstrated that personality affect sentiment in social media. This research contributes to the ongoing efforts in developing robust understanding of the relation between human behaviour on social media and personality features for real-world applications, such as political discourse analysis, and public opinion tracking.
- Abstract(参考訳): ソーシャルメディアはますますパーソナライズに向かっており、個人が自分の信念、関心、習慣、活動を明らかにする。
本研究は、Twitter上でのアラビア語の使用と性格特性と感情分析への影響の相関について検討した。
本研究では、プロフィール活動から抽出した情報と、ツイートの内容に基づいて、ユーザの性格特性を示す。
分析には言語的特徴,プロファイル統計(性別,年齢,生物など),エモティコンなどの追加的特徴が取り入れられた。
パーソナリティデータを取得するために、アラビア語で16人格テストを受けたユーザのタイムラインとプロフィールを16人格.comでクロールした。
われわれのデータセット「AraPers」は3,250名のユーザーがTwitterで自分の性格を共有できた。
さまざまな機械学習手法を実装し,人格の特徴を明らかにするために,この目的のための専用モデルを開発し,74.86%の正確度をBERTで達成し,このデータセットの分析により,言語的特徴,プロファイルの特徴,派生モデルを用いて人格の特徴を区別できることが判明した。
さらに,人格がソーシャルメディアの感情に影響を及ぼすことが明らかとなった。
本研究は、ソーシャルメディア上での人間行動と、政治談話分析や世論追跡といった現実の応用における人格的特徴との関係について、強固な理解を深めるための継続的な取り組みに寄与する。
関連論文リスト
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
パーソナリティ認識は,対話やソーシャルメディア投稿などのユーザデータに含まれる性格特性を識別することを目的としている。
本稿では,人格特性の証拠として推論過程を明らかにすることを目的とした,説明可能な人格認識という新しい課題を提案する。
論文 参考訳(メタデータ) (2024-09-29T14:41:43Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
パーソナリティ検出は、ソーシャルメディア投稿に根ざした性格特性を検出することを目的としている。
既存のほとんどのメソッドは、事前訓練された言語モデルを微調整することで、ポスト機能を直接学習する。
本稿では,大規模言語モデル (LLM) に基づくテキスト拡張強化人格検出モデルを提案する。
論文 参考訳(メタデータ) (2024-03-12T12:10:18Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
本稿では,Large Language Models (LLMs) の性格特性の編集に焦点をあてた革新的なタスクを紹介する。
このタスクに対処する新しいベンチマークデータセットであるPersonalityEditを構築します。
論文 参考訳(メタデータ) (2023-10-03T16:02:36Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
言語モデルにおける知覚的パーソナリティが、言語生成において一貫して現れるかどうかを検討する。
BERT や GPT2 のような言語モデルでは、異なる文脈におけるパーソナライズマーカーの識別と反映が一貫して可能であることを示す。
この振る舞いは、非常に予測可能な方法で操作できる能力を示し、それらを人格の特徴を特定し、ダイアログシステムのようなアプリケーションにおけるペルソナを制御するツールとしてフレーム化します。
論文 参考訳(メタデータ) (2022-12-20T14:24:11Z) - Exploring Personality and Online Social Engagement: An Investigation of
MBTI Users on Twitter [0.0]
自称マイアーズ・ブリッグス性格特性(MBTI)を用いたTwitterのプロフィール3848件について検討する。
我々は、ディープラーニングに基づく最先端のNLPアーキテクチャであるBERTを利用して、タスクに最も予測力を持つさまざまなテキストソースを分析します。
MBTIシステムの全次元に対して, 伝記, ステータス, お気に入りツイートが有意な予測力を持っていることがわかった。
論文 参考訳(メタデータ) (2021-09-14T02:26:30Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
我々は、"PERS"と呼ばれる新しい多視点融合フレームワークを適用して、マイアーズ・ブリッグス・パーソナリティ・タイプインジケータを推定する。
実験の結果,多視点データからパーソナリティ・プロファイリングを学習する能力は,多様なソーシャル・マルチメディア・ソースからやってくるデータを効率的に活用できることが示唆された。
論文 参考訳(メタデータ) (2021-06-20T10:48:49Z) - My tweets bring all the traits to the yard: Predicting personality and
relational traits in Online Social Networks [4.095574580512599]
本研究は,オンラインソーシャルネットワーク(OSN)における全体像プロファイルの予測モデルを提供することを目的とする。
我々はまずOSNアカウントから幅広い機能を抽出する機能エンジニアリング手法を考案した。
そして,抽出した特徴に基づいて,ユーザの心理的特徴のスコアを予測する機械学習モデルを設計した。
論文 参考訳(メタデータ) (2020-09-22T20:30:56Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z) - On Predicting Personal Values of Social Media Users using
Community-Specific Language Features and Personal Value Correlation [14.12186042953335]
この研究は、シンガポールのユーザーの個人的価値を分析し、Facebookデータを用いて個人的価値を予測する効果的なモデルを開発することに焦点を当てている。
提案したスタックモデルには,基本モデルのタスク固有層とクロススティッチ層モデルからなる相関関係が組み込まれている。
論文 参考訳(メタデータ) (2020-07-16T04:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。