AI-driven multi-omics integration for multi-scale predictive modeling of causal genotype-environment-phenotype relationships
- URL: http://arxiv.org/abs/2407.06405v1
- Date: Mon, 8 Jul 2024 21:23:25 GMT
- Title: AI-driven multi-omics integration for multi-scale predictive modeling of causal genotype-environment-phenotype relationships
- Authors: You Wu, Lei Xie,
- Abstract summary: We propose a new artificial intelligence (AI)-powered biology-inspired multi-scale modeling framework to tackle these issues.
This framework will integrate multi-omics data across biological levels, organism hierarchies, and species to predict causal genotype-environment-phenotype relationships under various conditions.
- Score: 9.909750609459074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the wealth of single-cell multi-omics data, it remains challenging to predict the consequences of novel genetic and chemical perturbations in the human body. It requires knowledge of molecular interactions at all biological levels, encompassing disease models and humans. Current machine learning methods primarily establish statistical correlations between genotypes and phenotypes but struggle to identify physiologically significant causal factors, limiting their predictive power. Key challenges in predictive modeling include scarcity of labeled data, generalization across different domains, and disentangling causation from correlation. In light of recent advances in multi-omics data integration, we propose a new artificial intelligence (AI)-powered biology-inspired multi-scale modeling framework to tackle these issues. This framework will integrate multi-omics data across biological levels, organism hierarchies, and species to predict causal genotype-environment-phenotype relationships under various conditions. AI models inspired by biology may identify novel molecular targets, biomarkers, pharmaceutical agents, and personalized medicines for presently unmet medical needs.
Related papers
- Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
Mutagenicity is a concern due to its association with genetic mutations which can result in a variety of negative consequences.
In this work, we introduce a novel stacked ensemble based mutagenicity prediction model.
arXiv Detail & Related papers (2024-09-03T09:14:21Z) - Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold [83.18058549195855]
We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities.
In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient.
We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations.
arXiv Detail & Related papers (2024-08-26T20:05:31Z) - Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
Investigating the genetic architecture of complex diseases is challenging due to the highly polygenic and interactive landscape of genetic and environmental factors.
We trained artificial neural networks for predicting complex traits using both simulated and real genotype/phenotype datasets.
arXiv Detail & Related papers (2024-07-26T15:20:42Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z) - Expectile Neural Networks for Genetic Data Analysis of Complex Diseases [3.0088453915399747]
We develop an expectile neural network (ENN) method for genetic data analyses of complex diseases.
Similar to expectile regression, ENN provides a comprehensive view of relationships between genetic variants and disease phenotypes.
We show that the proposed method outperformed an existing expectile regression when there exist complex relationships between genetic variants and disease phenotypes.
arXiv Detail & Related papers (2020-10-26T21:07:40Z) - A Cross-Level Information Transmission Network for Predicting Phenotype
from New Genotype: Application to Cancer Precision Medicine [37.442717660492384]
We propose a novel Cross-LEvel Information Transmission network (CLEIT) framework.
Inspired by domain adaptation, CLEIT first learns the latent representation of high-level domain then uses it as ground-truth embedding.
We demonstrate the effectiveness and performance boost of CLEIT in predicting anti-cancer drug sensitivity from somatic mutations.
arXiv Detail & Related papers (2020-10-09T22:01:00Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.