Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
- URL: http://arxiv.org/abs/2408.14608v1
- Date: Mon, 26 Aug 2024 20:05:31 GMT
- Title: Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
- Authors: Lazar Atanackovic, Xi Zhang, Brandon Amos, Mathieu Blanchette, Leo J. Lee, Yoshua Bengio, Alexander Tong, Kirill Neklyudov,
- Abstract summary: We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities.
In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient.
We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations.
- Score: 83.18058549195855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous biological and physical processes can be modeled as systems of interacting entities evolving continuously over time, e.g. the dynamics of communicating cells or physical particles. Learning the dynamics of such systems is essential for predicting the temporal evolution of populations across novel samples and unseen environments. Flow-based models allow for learning these dynamics at the population level - they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities. That is, the change of the population at any moment in time depends on the population itself due to the interactions between samples. In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient. We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations. Namely, we embed the population of samples using a Graph Neural Network (GNN) and use these embeddings to train a Flow Matching model. This gives MFM the ability to generalize over the initial distributions unlike previously proposed methods. We demonstrate the ability of MFM to improve prediction of individual treatment responses on a large scale multi-patient single-cell drug screen dataset.
Related papers
- Modeling, Inference, and Prediction in Mobility-Based Compartmental Models for Epidemiology [5.079807662054658]
We introduce individual mobility as a key factor in disease transmission and control.
We characterize disease dynamics using mobility distribution functions for each compartment.
We infer mobility distributions from the time series of the infected population.
arXiv Detail & Related papers (2024-06-17T18:13:57Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Correlational Lagrangian Schr\"odinger Bridge: Learning Dynamics with
Population-Level Regularization [27.855576268065857]
We introduce a novel framework dubbed correlational Lagrangian Schr"odinger bridge ( CLSB)
CLSB seeks for the evolution "bridging" among cross-text observations, while regularized for the minimal population "cost"
Our contributions include (1) a new class of population regularizers capturing the temporal variations in multivariate relations, with the tractable formulation derived, and (3) three domain-informed instantiations based on genetic co-expression stability.
arXiv Detail & Related papers (2024-02-04T19:33:44Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Deep diffusion-based forecasting of COVID-19 by incorporating
network-level mobility information [22.60685417365995]
We develop a deep learning-based timeseries model for probabilistic forecasting called Auto-regressive Mixed Density Diffusion Dynamic Network(ARM3Dnet)
We show that our model can outperform both traditional statistical and deep learning models in forecasting the number of Covid-19 deaths and cases at the county level in the United States.
arXiv Detail & Related papers (2021-11-09T15:18:03Z) - Individual Survival Curves with Conditional Normalizing Flows [0.0]
We introduce here a conditional normalizing flow based estimate of the time-to-event density as a way to model highly flexible and individualized conditional survival distributions.
We experimentally validate the proposed approach on a synthetic dataset as well as four open medical datasets and an example of a common financial problem.
arXiv Detail & Related papers (2021-07-27T13:45:12Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.